Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 26(5): 784-796, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600234

RESUMEN

DNA-protein crosslinks (DPCs) induced by aldehydes interfere with replication and transcription. Hereditary deficiencies in DPC repair and aldehyde clearance processes cause progeria, including Ruijs-Aalfs syndrome (RJALS) and AMeD syndrome (AMeDS) in humans. Although the elimination of DPC during replication has been well established, how cells overcome DPC lesions in transcription remains elusive. Here we show that endogenous aldehyde-induced DPC roadblocks are efficiently resolved by transcription-coupled repair (TCR). We develop a high-throughput sequencing technique to measure the genome-wide distribution of DPCs (DPC-seq). Using proteomics and DPC-seq, we demonstrate that the conventional TCR complex as well as VCP/p97 and the proteasome are required for the removal of formaldehyde-induced DPCs. TFIIS-dependent cleavage of RNAPII transcripts protects against transcription obstacles. Finally, a mouse model lacking both aldehyde clearance and TCR confirms endogenous DPC accumulation in actively transcribed regions. Collectively, our data provide evidence that transcription-coupled DPC repair (TC-DPCR) as well as aldehyde clearance are crucial for protecting against metabolic genotoxin, thus explaining the molecular pathogenesis of AMeDS and other disorders associated with defects in TCR, such as Cockayne syndrome.


Asunto(s)
Aldehídos , Reparación del ADN , Transcripción Genética , Animales , Humanos , Aldehídos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Ratones , ADN/metabolismo , ADN/genética , Daño del ADN , Ratones Noqueados , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Ratones Endogámicos C57BL , Formaldehído/toxicidad , Formaldehído/farmacología , Reparación por Escisión
2.
Proc Natl Acad Sci U S A ; 120(47): e2315347120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37967220

RESUMEN

The organelle contact site of the endoplasmic reticulum and mitochondria, known as the mitochondria-associated membrane (MAM), is a multifunctional microdomain in cellular homeostasis. We previously reported that MAM disruption is a common pathological feature in amyotrophic lateral sclerosis (ALS); however, the precise role of MAM in ALS was uncovered. Here, we show that the MAM is essential for TANK-binding kinase 1 (TBK1) activation under proteostatic stress conditions. A MAM-specific E3 ubiquitin ligase, autocrine motility factor receptor, ubiquitinated nascent proteins to activate TBK1 at the MAM, which results in ribosomal protein degradation. MAM or TBK1 deficiency under proteostatic stress conditions resulted in increased cellular vulnerability in vitro and motor impairment in vivo. Thus, MAM disruption exacerbates proteostatic stress via TBK1 inactivation in ALS. Our study has revealed a proteostatic mechanism mediated by the MAM-TBK1 axis, highlighting the physiological importance of the organelle contact sites.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
3.
J Exp Med ; 220(11)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37725372

RESUMEN

Accumulation of lipotoxic lipids, such as free cholesterol, induces hepatocyte death and subsequent inflammation and fibrosis in the pathogenesis of nonalcoholic steatohepatitis (NASH). However, the underlying mechanisms remain unclear. We have previously reported that hepatocyte death locally induces phenotypic changes in the macrophages surrounding the corpse and remnant lipids, thereby promoting liver fibrosis in a murine model of NASH. Here, we demonstrated that lysosomal cholesterol overload triggers lysosomal dysfunction and profibrotic activation of macrophages during the development of NASH. ß-cyclodextrin polyrotaxane (ßCD-PRX), a unique supramolecule, is designed to elicit free cholesterol from lysosomes. Treatment with ßCD-PRX ameliorated cholesterol accumulation and profibrotic activation of macrophages surrounding dead hepatocytes with cholesterol crystals, thereby suppressing liver fibrosis in a NASH model, without affecting the hepatic cholesterol levels. In vitro experiments revealed that cholesterol-induced lysosomal stress triggered profibrotic activation in macrophages predisposed to the steatotic microenvironment. This study provides evidence that dysregulated cholesterol metabolism in macrophages would be a novel mechanism of NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Modelos Animales de Enfermedad , Cirrosis Hepática , Macrófagos , Colesterol , Lisosomas
4.
Mol Genet Metab Rep ; 33: 100925, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36274670

RESUMEN

Non-immune hydrops fetalis (NIHF) indicates the risk for stillbirth. Although the causes vary and most NIHFs have no identifiable cause, recent advances in exome sequencing have increased diagnostic rates. We report a case of NIHF that developed into a giant cystic hygroma complicated by maternal mirror syndrome. Trio-based exome sequencing showed a de novo heterozygous missense variant in the RIT1 (NM_006912: c.246 T > G [p.F82L]). The RIT1 variants are known causative variants of Noonan syndrome (NS; OMIM #163950). The location of the RIT1 variants in the previously reported NS cases with NIHF or/and maternal mirror syndrome was mainly in the switch II region, including the present case. While a further accumulation of cases is needed, exome sequencing, which can identify the variant type in detail, might help predict the phenotype and severity of NIHF.

5.
J Hum Genet ; 66(5): 491-498, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33130828

RESUMEN

CUL3 forms Cullin-Ring ubiquitin ligases (CRL) with Ring-box protein and BTB-adaptor proteins. A variety of BTB-adaptor proteins have been reported to interact with the N-terminus of CUL3, which makes it possible to recognize various substrates for degradation. Regarding the association of CUL3 with neurodevelopmental disorders, a recent study reported three patients with global developmental delay, who carried de novo variants in CUL3. Here, we describe a novel de novo CUL3 variant (c.158G > A, p.Ser53Asn) identified in a patient with global developmental delay, who presented some novel dysmorphic features, including macrocephaly, characteristic facial features, and cutis marmorata. Immunoprecipitation and immunoblot analyses identified significantly weaker binding ability to some BTB proteins in CUL3-S53N compared to wild-type. Interestingly, label-free quantification proteomics analysis of samples immunoprecipitated by CUL3-S53N showed a significantly decreased interaction with some BTB proteins, while almost equal interaction or significantly increased interaction was observed with other BTB proteins. The binding between CUL3 and BTB proteins is essential for CRL substrate recognition, and alteration of their interaction is thought to result in the quantitative alteration in substrate proteins. It is possible that the difference of dysmorphic features between the present case and previously reported cases is caused by the distinctive effect of each CUL3 variant on substrate proteins. The clinical information of the present case will expand the picture of CUL3-related global developmental disorders, and subsequent cell biological analysis of the novel mutation will provide insight into the underlying molecular mechanism of how CUL3 pathogenic variants cause neurological disorders.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sustitución de Aminoácidos , Dominio BTB-POZ , Proteínas Cullin/genética , Mutación Missense , Trastornos del Neurodesarrollo/genética , Mutación Puntual , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Cullin/metabolismo , Cara/anomalías , Estudios de Asociación Genética , Heterogeneidad Genética , Células HEK293 , Heterocigoto , Humanos , Recién Nacido , Discapacidad Intelectual/genética , Masculino , Megalencefalia/genética , Fenotipo , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Recombinantes/metabolismo , Enfermedades Cutáneas Vasculares/genética , Secuenciación del Exoma
6.
Sci Adv ; 6(51)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33355142

RESUMEN

Rs671 in the aldehyde dehydrogenase 2 gene (ALDH2) is the cause of Asian alcohol flushing response after drinking. ALDH2 detoxifies endogenous aldehydes, which are the major source of DNA damage repaired by the Fanconi anemia pathway. Here, we show that the rs671 defective allele in combination with mutations in the alcohol dehydrogenase 5 gene, which encodes formaldehyde dehydrogenase (ADH5FDH ), causes a previously unidentified disorder, AMeD (aplastic anemia, mental retardation, and dwarfism) syndrome. Cellular studies revealed that a decrease in the formaldehyde tolerance underlies a loss of differentiation and proliferation capacity of hematopoietic stem cells. Moreover, Adh5-/-Aldh2 E506K/E506K double-deficient mice recapitulated key clinical features of AMeDS, showing short life span, dwarfism, and hematopoietic failure. Collectively, our results suggest that the combined deficiency of formaldehyde clearance mechanisms leads to the complex clinical features due to overload of formaldehyde-induced DNA damage, thereby saturation of DNA repair processes.

7.
Cell ; 180(6): 1228-1244.e24, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32142649

RESUMEN

Transcription-coupled nucleotide excision repair (TC-NER) is initiated by the stalling of elongating RNA polymerase II (RNAPIIo) at DNA lesions. The ubiquitination of RNAPIIo in response to DNA damage is an evolutionarily conserved event, but its function in mammals is unknown. Here, we identified a single DNA damage-induced ubiquitination site in RNAPII at RPB1-K1268, which regulates transcription recovery and DNA damage resistance. Mechanistically, RPB1-K1268 ubiquitination stimulates the association of the core-TFIIH complex with stalled RNAPIIo through a transfer mechanism that also involves UVSSA-K414 ubiquitination. We developed a strand-specific ChIP-seq method, which revealed RPB1-K1268 ubiquitination is important for repair and the resolution of transcriptional bottlenecks at DNA lesions. Finally, RPB1-K1268R knockin mice displayed a short life-span, premature aging, and neurodegeneration. Our results reveal RNAPII ubiquitination provides a two-tier protection mechanism by activating TC-NER and, in parallel, the processing of DNA damage-stalled RNAPIIo, which together prevent prolonged transcription arrest and protect against neurodegeneration.


Asunto(s)
Reparación del ADN/fisiología , ARN Polimerasa II/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , ADN/metabolismo , Daño del ADN/fisiología , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Femenino , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Polimerasa II/genética , Ubiquitinación
8.
J Med Genet ; 57(4): 245-253, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31712251

RESUMEN

BACKGROUND: 3C/Ritscher-Schinzel syndrome is characterised by congenital cranio-cerebello-cardiac dysplasia, where CCDC22 and WASHC5 are accepted as the causative genes. In combination with the retromer or retriever complex, these genes play a role in endosomal membrane protein recycling. We aimed to identify the gene abnormality responsible for the pathogenicity in siblings with a 3C/Ritscher-Schinzel-like syndrome, displaying cranio-cerebello-cardiac dysplasia, coloboma, microphthalmia, chondrodysplasia punctata and complicated skeletal malformation. METHODS: Exome sequencing was performed to identify pathogenic variants. Cellular biological analyses and generation of knockout mice were carried out to elucidate the gene function and pathophysiological significance of the identified variants. RESULTS: We identified compound heterozygous pathogenic variants (c.1097dup; p.Cys366Trpfs*28 and c.2755G>A; p.Ala919Thr) in the VPS35L gene, which encodes a core protein of the retriever complex. The identified missense variant lacked the ability to form the retriever complex, and the frameshift variant induced non-sense-mediated mRNA decay, thereby confirming biallelic loss of function of VPS35L. In addition, VPS35L knockout cells showed decreased autophagic function in nutrient-rich and starvation conditions, as well as following treatment with Torin 1. We also generated Vps35l-/- mice and demonstrated that they were embryonic lethal at an early stage, between E7.5 and E10.5. CONCLUSIONS: Our results suggest that biallelic loss-of-function variants in VPS35L underlies 3C/Ritscher-Schinzel-like syndrome. Furthermore, VPS35L is necessary for autophagic function and essential for early embryonic development. The data presented here provide a new insight into the critical role of the retriever complex in fetal development.


Asunto(s)
Anomalías Múltiples/genética , Cerebelo/metabolismo , Anomalías Craneofaciales/genética , Síndrome de Dandy-Walker/genética , Predisposición Genética a la Enfermedad , Defectos del Tabique Interatrial/genética , Proteínas de Transporte Vesicular/genética , Anomalías Múltiples/patología , Animales , Cerebelo/patología , Anomalías Craneofaciales/patología , Síndrome de Dandy-Walker/patología , Femenino , Defectos del Tabique Interatrial/patología , Humanos , Mutación con Pérdida de Función/genética , Ratones , Ratones Noqueados , Mutación Missense/genética , Naftiridinas/farmacología , Fenotipo , Embarazo , Estabilidad del ARN/genética
9.
J Cell Biol ; 212(1): 63-75, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26711499

RESUMEN

Cellular genomes are highly vulnerable to perturbations to chromosomal DNA replication. Proliferating cell nuclear antigen (PCNA), the processivity factor for DNA replication, plays a central role as a platform for recruitment of genome surveillance and DNA repair factors to replication forks, allowing cells to mitigate the threats to genome stability posed by replication stress. We identify the E3 ubiquitin ligase TRAIP as a new factor at active and stressed replication forks that directly interacts with PCNA via a conserved PCNA-interacting peptide (PIP) box motif. We show that TRAIP promotes ATR-dependent checkpoint signaling in human cells by facilitating the generation of RPA-bound single-stranded DNA regions upon replication stress in a manner that critically requires its E3 ligase activity and is potentiated by the PIP box. Consequently, loss of TRAIP function leads to enhanced chromosomal instability and decreased cell survival after replication stress. These findings establish TRAIP as a PCNA-binding ubiquitin ligase with an important role in protecting genome integrity after obstacles to DNA replication.


Asunto(s)
Replicación del ADN/genética , Inestabilidad Genómica , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Células Tumorales Cultivadas
10.
Science ; 348(6234): 1253671, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25931565

RESUMEN

DNA interstrand cross-links (ICLs) block replication fork progression by inhibiting DNA strand separation. Repair of ICLs requires sequential incisions, translesion DNA synthesis, and homologous recombination, but the full set of factors involved in these transactions remains unknown. We devised a technique called chromatin mass spectrometry (CHROMASS) to study protein recruitment dynamics during perturbed DNA replication in Xenopus egg extracts. Using CHROMASS, we systematically monitored protein assembly and disassembly on ICL-containing chromatin. Among numerous prospective DNA repair factors, we identified SLF1 and SLF2, which form a complex with RAD18 and together define a pathway that suppresses genome instability by recruiting the SMC5/6 cohesion complex to DNA lesions. Our study provides a global analysis of an entire DNA repair pathway and reveals the mechanism of SMC5/6 relocalization to damaged DNA in vertebrate cells.


Asunto(s)
Daño del ADN , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Replicación del ADN , Animales , Cromatina/química , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Espectrometría de Masas/métodos , Proteómica/métodos , Proteínas de Unión al ARN/metabolismo , Xenopus
11.
EMBO J ; 34(10): 1385-98, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25862789

RESUMEN

Ubiquitin and ubiquitin-like proteins (UBLs) function in a wide array of cellular processes. UBL5 is an atypical UBL that does not form covalent conjugates with cellular proteins and which has a known role in modulating pre-mRNA splicing. Here, we report an unexpected involvement of human UBL5 in promoting the function of the Fanconi anemia (FA) pathway for repair of DNA interstrand crosslinks (ICLs), mediated by a specific interaction with the central FA pathway component FANCI. UBL5-deficient cells display spliceosome-independent reduction of FANCI protein stability, defective FANCI function in response to DNA damage and hypersensitivity to ICLs. By mapping the sequence determinants underlying UBL5-FANCI binding, we generated separation-of-function mutants to demonstrate that key aspects of FA pathway function, including FANCI-FANCD2 heterodimerization, FANCD2 and FANCI monoubiquitylation and maintenance of chromosome stability after ICLs, are compromised when the UBL5-FANCI interaction is selectively inhibited by mutations in either protein. Together, our findings establish UBL5 as a factor that promotes the functionality of the FA DNA repair pathway.


Asunto(s)
Proteínas del Ojo/metabolismo , Anemia de Fanconi/metabolismo , Ubiquitinas/metabolismo , Línea Celular , Línea Celular Tumoral , Daño del ADN , Proteínas del Ojo/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoquímica , Estabilidad Proteica , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinas/genética
12.
Mol Cell ; 57(1): 150-64, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25557546

RESUMEN

We show that central components of the Fanconi anemia (FA) DNA repair pathway, the tumor suppressor proteins FANCI and FANCD2 (the ID complex), are SUMOylated in response to replication fork stalling. The ID complex is SUMOylated in a manner that depends on the ATR kinase, the FA ubiquitin ligase core complex, and the SUMO E3 ligases PIAS1/PIAS4 and is antagonized by the SUMO protease SENP6. SUMOylation of the ID complex drives substrate selectivity by triggering its polyubiquitylation by the SUMO-targeted ubiquitin ligase RNF4 to promote its removal from sites of DNA damage via the DVC1-p97 ubiquitin segregase complex. Deregulation of ID complex SUMOylation compromises cell survival following replication stress. Our results uncover a regulatory role for SUMOylation in the FA pathway, and we propose that ubiquitin-SUMO signaling circuitry is a mechanism that contributes to the balance of activated ID complex dosage at sites of DNA damage.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Cisteína Endopeptidasas/genética , Daño del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Regulación de la Expresión Génica , Células HEK293 , Humanos , Hidroxiurea/farmacología , Proteínas Nucleares/genética , Proteínas de Unión a Poli-ADP-Ribosa , Unión Proteica , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Factores de Transcripción/genética , Ubiquitina/genética , Ubiquitinación
13.
EMBO Rep ; 15(9): 956-64, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25092792

RESUMEN

UBL5 is an atypical ubiquitin-like protein, whose function in metazoans remains largely unexplored. We show that UBL5 is required for sister chromatid cohesion maintenance in human cells. UBL5 primarily associates with spliceosomal proteins, and UBL5 depletion decreases pre-mRNA splicing efficiency, leading to globally enhanced intron retention. Defective sister chromatid cohesion is a general consequence of dysfunctional pre-mRNA splicing, resulting from the selective downregulation of the cohesion protection factor Sororin. As the UBL5 yeast orthologue, Hub1, also promotes spliceosome functions, our results show that UBL5 plays an evolutionary conserved role in pre-mRNA splicing, the integrity of which is essential for the fidelity of chromosome segregation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/genética , Proteínas del Ojo/genética , Precursores del ARN/genética , Empalme del ARN/genética , Ubiquitinas/genética , Cromátides/genética , Segregación Cromosómica/genética , Proteínas del Ojo/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Ligasas/genética , Mitosis/genética , Proteínas de Saccharomyces cerevisiae/genética , Empalmosomas/genética , Ubiquitinas/metabolismo
14.
Cell ; 150(4): 697-709, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22884692

RESUMEN

Histone ubiquitylation is a prominent response to DNA double-strand breaks (DSBs), but how these modifications are confined to DNA lesions is not understood. Here, we show that TRIP12 and UBR5, two HECT domain ubiquitin E3 ligases, control accumulation of RNF168, a rate-limiting component of a pathway that ubiquitylates histones after DNA breakage. We find that RNF168 can be saturated by increasing amounts of DSBs. Depletion of TRIP12 and UBR5 allows accumulation of RNF168 to supraphysiological levels, followed by massive spreading of ubiquitin conjugates and hyperaccumulation of ubiquitin-regulated genome caretakers such as 53BP1 and BRCA1. Thus, regulatory and proteolytic ubiquitylations are wired in a self-limiting circuit that promotes histone ubiquitylation near the DNA lesions but at the same time counteracts its excessive spreading to undamaged chromosomes. We provide evidence that this mechanism is vital for the homeostasis of ubiquitin-controlled events after DNA breakage and can be subverted during tumorigenesis.


Asunto(s)
Proteínas Portadoras/metabolismo , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Ubiquitina-Proteína Ligasas/metabolismo , Alphapapillomavirus , Línea Celular , Línea Celular Tumoral , Silenciador del Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/virología , Infecciones por Papillomavirus/metabolismo , Infecciones por Papillomavirus/patología , Transcripción Genética , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitinación
15.
Int J Radiat Oncol Biol Phys ; 83(2): e241-50, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22365624

RESUMEN

PURPOSE: Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. METHODS AND MATERIALS: Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. RESULTS: Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% and 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO(2)-hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ß-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. CONCLUSIONS: The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation.


Asunto(s)
Neoplasias de la Mama/radioterapia , Senescencia Celular/fisiología , Fase G1/efectos de la radiación , Fase G2/efectos de la radiación , Mitosis/efectos de la radiación , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/fisiopatología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Ciclina E/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente/métodos , Fase G1/fisiología , Fase G2/fisiología , Humanos , Microscopía de Contraste de Fase/métodos , Mitosis/fisiología , ARN Interferente Pequeño/metabolismo , Dosis de Radiación , Factores de Tiempo , beta-Galactosidasa/metabolismo
16.
Biochem Biophys Res Commun ; 416(1-2): 111-8, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22093823

RESUMEN

It is well documented that deficiency in ataxia telangiectasia mutated (ATM) protein leads to elevated frequency of chromosome translocation, however, it remains poorly understood how ATM suppresses translocation frequency. In the present study, we addressed the mechanism of ATM-dependent suppression of translocation frequency. To know frequency of translocation events in a whole genome at once, we performed centromere/telomere FISH and scored dicentric chromosomes, because dicentric and translocation occur with equal frequency and by identical mechanism. By centromere/telomere FISH analysis, we confirmed that chemical inhibition or RNAi-mediated knockdown of ATM causes 2 to 2.5-fold increase in dicentric frequency at first mitosis after 2 Gy of gamma-irradiation in G0/G1. The FISH analysis revealed that ATM/p53-dependent G1 checkpoint suppresses dicentric frequency, since RNAi-mediated knockdown of p53 elevated dicentric frequency by 1.5-fold. We found ATM also suppresses dicentric occurrence independently of its checkpoint role, as ATM inhibitor showed additional effect on dicentric frequency in the context of p53 depletion and Chk1/2 inactivation. Epistasis analysis using chemical inhibitors revealed that ATM kinase functions in the same pathway that requires kinase activity of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to suppress dicentric frequency. From the results in the present study, we conclude that ATM minimizes translocation frequency through its commitment to G1 checkpoint and DNA double-strand break repair pathway that requires kinase activity of DNA-PKcs.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Proteínas Serina-Treonina Quinasas/genética , Supresión Genética , Translocación Genética/genética , Proteínas Supresoras de Tumor/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Centrómero/genética , Roturas del ADN de Doble Cadena , Proteína Quinasa Activada por ADN , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de la radiación , Técnicas de Silenciamiento del Gen , Hibridación Fluorescente in Situ , Rayos Infrarrojos , Interferencia de ARN , Telómero/genética , Proteína p53 Supresora de Tumor/metabolismo
17.
J Radiat Res ; 52(6): 766-74, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21997193

RESUMEN

Cell cycle checkpoints are essential cellular process protecting the integrity of the genome from DNA damaging agents. In the present study, we developed a microcolony assay, in which normal human diploid fibroblast-like cells exposed to ionizing radiation, were plated onto coverslips at very low density (3 cells/cm(2)). Cells were grown for up to 3 days, and phosphorylated ATM at Ser1981 and 53BP1 foci were analyzed as the markers for an amplified DNA damage signal. We observed a dose-dependent increase in the fraction of non-dividing cells, whose increase was compromised by knocking down p53 expression. While large persistent foci were predominantly formed in non-dividing cells, we observed some growing colonies that contained cells with large foci. As each microcolony was derived from a single cell, it appeared that some cells could proliferate with large foci. A live-imaging analysis using hTERT-immortalized normal human diploid cells transfected with the EGFP-tagged 53BP1 gene revealed that the formation of persistent large foci was highly dynamic. Delayed appearance and disappearance of large foci were frequently observed in exposed cells visualized 12-72 hours after X-irradiation. Thus, our results indicate that amplified DNA damage signal could be ignored, which may be explained in part by the dynamic nature of the amplification process.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Puntos de Control del Ciclo Celular/efectos de la radiación , Daño del ADN , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Ensayo de Unidades Formadoras de Colonias , Proteínas de Unión al ADN/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Técnicas de Silenciamiento del Gen , Genes p53 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Proteínas Supresoras de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53
18.
Biochem Biophys Res Commun ; 411(4): 762-7, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21784059

RESUMEN

The cohesin loading factor NIPBL is required for cohesin to associate with chromosomes and plays a role in DNA double-strand break (DSB) repair. Although the NIPBL homolog Scc2 is recruited to an enzymatically generated DSB and promotes cohesin-dependent DSB repair in yeast, the mechanism of the recruitment remains poorly understood. Here we show that the human NIPBL is recruited to the sites of DNA damage generated by micro-irradiation as well as to the sites of DSBs induced by homing endonuclease, I-PpoI. The recruitment of NIPBL was impaired by RNAi-mediated knockdown of MDC1 or RNF168, both of which also accumulate at DSBs. We also show that the recruitment of NIPBL to the sites of DNA damage is mediated by its C-terminal region containing HEAT repeats and Heterochromatin protein 1 (HP1) interacting motif. Furthermore, NIPBL accumulation at damaged sites was also compromised by HP1γ depletion. Taken together, our study reveals that human NIPBL is a novel protein recruited to DSB sites, and the recruitment is controlled by MDC1, RNF168 and HP1γ.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Transactivadores/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Línea Celular , Proteínas Cromosómicas no Histona/genética , Humanos , Proteínas Nucleares/genética , Interferencia de ARN , Transactivadores/genética , Ubiquitina-Proteína Ligasas/genética , Cohesinas
19.
Nat Protoc ; 6(2): 134-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21293454

RESUMEN

We describe a protocol for creating localized DNA double-strand breaks (DSBs) with minimal requirements that can be applied in cell biology and molecular biology. This protocol is based on the combination of 5-bromo-2'-deoxyuridine (BrdU) labeling and ultraviolet C (UVC) irradiation through porous membranes. Cells are labeled with 10 µM BrdU for 48-72 h, washed with Ca(2+)- and Mg(2+)-free PBS(-), covered by polycarbonate membranes with micropores and exposed to UVC light. With this protocol, localized DSBs are created within subnuclear areas, irrespective of the cell cycle phase. Recruitment of proteins involved in DNA repair, DNA damage response, chromatin remodeling and histone modifications can be visualized without any specialized equipment. The quality is the same as that obtained by laser microirradiation or by any other focal irradiation. DSBs become visible within 30 min of UVC irradiation.


Asunto(s)
Roturas del ADN de Doble Cadena , Mutagénesis Sitio-Dirigida/métodos , Bromodesoxiuridina/química , Filtros Microporos , Rayos Ultravioleta
20.
Genome Integr ; 1(1): 4, 2010 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-20678255

RESUMEN

BACKGROUND: DNA double strand breaks induced by DNA damaging agents, such ionizing radiation, are repaired by multiple DNA repair pathways including non-homologous end-joining (NHEJ) repair and homologous recombination (HR) repair. ATM-dependent DNA damage checkpoint regulates a part of DNA repair pathways, however, the exact role of ATM activity remains to be elucidated. In order to define the molecular structure of DNA double strand breaks requiring ATM activity we examined repair of DNA double strand breaks induced by different restriction endonucleases in normal human diploid cells treated with or without ATM-specific inhibitor. RESULTS: Synchronized G1 cells were treated with various restriction endonucleases. DNA double strand breaks were detected by the foci of phosphorylated ATM at serine 1981 and 53BP1. DNA damage was detectable 2 hours after the treatment, and the number of foci decreased thereafter. Repair of the 3'-protruding ends created by Pst I and Sph I was efficient irrespective of ATM function, whereas the repair of a part of the blunt ends caused by Pvu II and Rsa I, and 5'-protruding ends created by Eco RI and Bam HI, respectively, were compromised by ATM inhibition. CONCLUSIONS: Our results indicate that ATM-dependent pathway plays a pivotal role in the repair of a subset of DNA double strand breaks with specific end structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA