Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Biotechnol (NY) ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861110

RESUMEN

Tetrodotoxin (TTX), a pufferfish toxin, is a highly potent neurotoxin that has been found in a wide variety of animals. The TTX-bearing flatworm Planocera multitentaculata possesses a large amount of TTX and is considered responsible for the toxification of TTX-bearing animals such as pufferfish (Takifugu and Chelonodon) and the toxic goby Yongeichthys criniger. However, the mechanism underlying TTX accumulation in flatworms remains unclear. Previous studies have been limited to identifying the distribution of TTX in multiple organs, such as the digestive organs, genital parts, and the remaining tissues of flatworms. Here, we performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and immunohistochemical staining using a monoclonal anti-TTX antibody to elucidate the detailed localization of TTX in the tissues and organs of the flatworm P. multitentaculata. Immunohistochemical staining for P. multitentaculata showed that TTX-specific signals were detected not only in the ovaries and pharynx but also in many other tissues and organs, whereas no signal was detected in the brain, Lang's vesicle, and genitalia. In addition, combined with LC-MS/MS analysis, it was revealed for the first time that TTX accumulates in high concentrations in the basement membrane and epidermis. These findings robustly support the hypotheses of "TTX utilization protection from predators."

2.
Mar Biotechnol (NY) ; 25(5): 666-676, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36648572

RESUMEN

Tetrodotoxin (TTX), or pufferfish toxin, has been frequently detected in edible bivalves around the world during the last decade and is problematic in food hygiene and safety. It was reported recently that highly concentrated TTX was detected in the midgut gland of the akazara scallop Chlamys (Azumapecten) farreri subsp. akazara collected in coastal areas of the northern Japanese archipelago. The toxification of the bivalve was likely to involve the larvae of the flatworm, Planocera multitentaculata. However, the overall status of bivalve TTX toxification has not been elucidated. In this study, 14 species/subspecies of bivalves from various Japanese waters were subjected to LC-MS/MS analysis to reveal TTX toxification state, demonstrating that the Pectinidae, including C. farreri akazara, Chlamys farreri nipponensis, Chlamys (Mimachlamys) nobilis, and Mizuhopecten yessoensis, accumulated TTX in their midgut gland. Many individuals of C. farreri akazara and C. farreri nipponensis were found with high concentrations of TTX, while C. nobilis and M. yessoensis exhibited low concentrations. The extent of TTX accumulation in C. farreri akazara and C. farreri nipponensis varied widely by region and season. Curiously, no other bivalve species investigated in this study showed evidence of TTX. These results suggest that monitoring for TTX, like other shellfish toxins, is necessary to ensure that pectinid bivalves are a safe food resource.


Asunto(s)
Pectinidae , Platelmintos , Tetrodotoxina , Animales , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Tetrodotoxina/análisis
3.
Toxins (Basel) ; 14(2)2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35202177

RESUMEN

Tetrodotoxin (TTX)-bearing fish ingest TTX from their preys through the food chain and accumulate TTX in their bodies. Although a wide variety of TTX-bearing organisms have been reported, the missing link in the TTX supply chain has not been elucidated completely. Here, we investigated the composition of TTX and 5,6,11-trideoxyTTX in juveniles of the pufferfish, Chelonodon patoca, and toxic goby, Yongeichthys criniger, using LC-MS/MS, to resolve the missing link in the TTX supply chain. The TTX concentration varied among samples from different localities, sampling periods and fish species. In the samples from the same locality, the TTX concentration was significantly higher in the toxic goby juveniles than in the pufferfish juveniles. The concentration of TTX in all the pufferfish juveniles was significantly higher than that of 5,6,11-trideoxyTTX, whereas the compositional ratio of TTX and 5,6,11-trideoxyTTX in the goby was different among sampling localities. However, the TTX/5,6,11-trideoxyTTX ratio in the goby was not different among samples collected from the same locality at different periods. Based on a species-specific PCR, the detection rate of the toxic flatworm (Planocera multitentaculata)-specific sequence (cytochrome c oxidase subunit I) also varied between the intestinal contents of the pufferfish and toxic goby collected at different localities and periods. These results suggest that although the larvae of the toxic flatworm are likely to be responsible for the toxification of the pufferfish and toxic goby juveniles by TTX, these fish juveniles are also likely to feed on other TTX-bearing organisms depending on their habitat, and they also possess different accumulation mechanisms of TTX and 5,6,11-trideoxyTTX.


Asunto(s)
Venenos de los Peces/análisis , Venenos de los Peces/química , Venenos de los Peces/toxicidad , Peces , Tetraodontiformes , Tetrodotoxina/análisis , Tetrodotoxina/toxicidad , Animales , Cromatografía Liquida , Japón , Espectrometría de Masas en Tándem
4.
Aquat Toxicol ; 237: 105908, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34273772

RESUMEN

Tetrodotoxin (TTX), also known as pufferfish toxin, has been detected in marine edible bivalves worldwide. In this study, several bivalve species, Azumapecten farreri subsp. akazara, Patinopecten yessoensis and Mytilus galloprovincialis, collected from the Pacific side of the northern Japanese Islands, were studied for the accumulation of TTX in the presence of toxic planocerid larvae. LC-MS/MS analysis demonstrated that TTX was detected only in the midgut gland of A. farreri subsp. akazara. Toxic flatworm-specific PCR and direct sequencing of the amplicons showed that the DNA fragments of the Planocera multitentaculata COI gene were detected in the gut contents of the toxified bivalves. The planocerid larvae were also detected in the environmental seawaters. Toxification experiments in the aquarium demonstrated that the mussel M. galloprovincialis was also toxified by feeding on the toxic flatworm larvae. These results suggest that the source of TTX accumulation in edible bivalves is toxic flatworm larvae.


Asunto(s)
Mytilus , Platelmintos , Contaminantes Químicos del Agua , Animales , Cromatografía Liquida , Larva , Espectrometría de Masas en Tándem , Tetrodotoxina/toxicidad , Contaminantes Químicos del Agua/toxicidad
5.
Mar Biotechnol (NY) ; 22(6): 812-823, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32488506

RESUMEN

Oncorhynchus masou, including subspecies of Oncorhynchus masou masou (yamame) and Oncorhynchus masou ishikawae (amago), is one of the salmonid groups impacted by human activity such as dam construction and release of non-native salmonids. In this study, we investigated the genetic structure of O. masou populations in the Sakawa and Sagami Rivers, Japan, by sequencing the mitochondrial control region. We hoped to identify genetically the O. masou populations specific to and originally native to Kanagawa Prefecture, where the two subspecies are thought to be present. The populations found in the upstream tributaries, where there has been no human impact and no upstream migration of fishes, were assumed to be descendants of the local O. masou populations in both river systems, and the morphological features seen here were similar to amago and yamame. However, both populations were genetically related to amago. In addition, only six haplotypes were detected in 315 individuals collected from 20 localities in the two river systems. Furthermore, haplotype diversity and nucleotide diversity of these populations were low, and high FST values were observed. These results suggest that the population size is restricted and genetic diversity is decreasing in the O. masou populations of the Sakawa and Sagami Rivers.


Asunto(s)
Variación Genética , Oncorhynchus/anatomía & histología , Oncorhynchus/genética , Animales , ADN Mitocondrial , Haplotipos , Japón , Oncorhynchus/clasificación , Filogenia , Ríos
6.
Mar Biotechnol (NY) ; 22(6): 805-811, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32415408

RESUMEN

Tetrodotoxin (TTX), also known as pufferfish toxin, causes a respiratory disorder by blocking neurotransmission, with voltage-gated sodium channel inhibition on muscle and nerve tissues. The toxin is widely distributed across vertebrates, invertebrates and bacteria. Therefore, it is generally thought that TTX in pufferfish accumulates via the food webs, beginning with marine bacteria as a primary producer. Polyclad flatworms in the genus Planocera are also known to be highly toxic, TTX-bearing organisms. Unlike the case of pufferfish, the source of TTX in these flatworms is unknown. In this study, taxonomical distribution patterns of TTX were investigated for acotylean flatworms from coastal waters using molecular phylogenetic analysis and high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). A maximum likelihood tree based on the 28S rRNA gene sequence showed that the flatworms belonged to several different lineages among the genera Planocera, Stylochus, Paraplanocera, Discocelis, Notocomplana, Notoplana, Callioplana and Peudostylochus. After LC-MS/MS analysis, the distribution of TTX was mapped onto the molecular phylogenetic tree. TTX-bearing flatworm species were seen to be restricted to specific Planocera lineages, suggesting that the TTX-bearing flatworm species have common genes for TTX-accumulating mechanisms.


Asunto(s)
Platelmintos/química , Platelmintos/clasificación , Tetrodotoxina/aislamiento & purificación , Animales , Japón , Filogenia , Platelmintos/genética , ARN Ribosómico 28S/genética , Tetrodotoxina/química
7.
Chemosphere ; 249: 126217, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32088461

RESUMEN

Tetrodotoxin (TTX), a potent neurotoxin, is found in various phylogenetically diverse taxa. In marine environments, the pufferfish is at the top of the food chain among TTX-bearing organisms. The accumulation of TTX in the body of pufferfish appears to be of the food web that begins with bacteria. It is known that toxic pufferfishes possess TTX from the larval/juvenile stage. However, the source of the TTX is unknown because the maternally sourced TTX is extremely small in quantity. Therefore, the TTX has to be obtained from other organisms or directly from the environment. Here, we report evidence that the source of TTX for toxic fish juveniles including the pufferfish (Chelonodon patoca) and the goby (Yongeichthys criniger) is in the food organisms, as seen in their gut contents. Next generation sequencing analysis for the mitochondrial COI gene showed that the majority of the sequence recovered from intestinal contents of these toxic fishes belonged to the flatworm Planocera multitentaculata, a polyclad flatworm containing highly concentrated TTX from the larval stage. PCR specific to P. multitentaculata also showed that DNA encoding the planocerid COI gene was strongly detected in the intestinal contents of the goby and pufferfish juveniles. Additionally, the planocerid specific COI sequence was detected in the environmental seawater collected from the water around the sampling locations for TTX-bearing fish. These results suggest that planocerid larvae are the major TTX supplier for juveniles of TTX-bearing fish species.


Asunto(s)
Platelmintos/metabolismo , Tetraodontiformes/metabolismo , Tetrodotoxina/metabolismo , Animales , Cadena Alimentaria , Larva , Perciformes , Filogenia
8.
Toxicon ; 173: 57-61, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31778684

RESUMEN

Planocerid flatworms and the related species (Platyhelminthes: polycladida) are known as tetrodotoxin (TTX)-bearing organisms, and they contribute to toxification of marine organisms at higher trophic levels, such as pufferfish and sea slugs. However, little is known of their biology or ecology. In this study, we therefore investigated the occurrence and toxicity of two sympatric planocerids, Planocera multitentaculata and Planocera reticulata, in intertidal zones of the central region of mainland Honshu, Japanese Islands. Planocera multitentaculata was much more abundant than P. reticulata. Body weight was greater in P. multitentaculata than in P. reticulata. Although a significant difference in TTX concentration was not observed between the two species, total TTX content per individual was greater in P. multitentaculata.


Asunto(s)
Platelmintos/fisiología , Tetrodotoxina/toxicidad , Animales , Cromatografía Liquida , Cadena Alimentaria , Islas , Espectrometría de Masas en Tándem , Tetraodontiformes , Tetrodotoxina/química
9.
Toxins (Basel) ; 11(7)2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31373322

RESUMEN

The pufferfish Takifugu niphobles (at present Takifugu alboplumbeus) possesses highly concentrated tetrodotoxin (TTX), an extremely potent neurotoxin that provides effective protection from predators, at least at the larval stages. However, the source of the toxin has remained unclear. Recently, DNA from the toxic flatworm Planocera multitentaculata was detected in the intestinal contents of juveniles and young of the pufferfish, suggesting that the flatworm contributes to its toxification at various stages of its life. In this study, we describe the behavior of the pufferfish in the intertidal zone that appears to contribute to its toxification before and during its spawning period: pufferfish were found to aggregate and ingest flatworm egg plates by scraping them off the surface of rocks. DNA analysis based on 28S rRNA and cytochrome c oxidase subunit I (COI) genes identified the egg plates as those of P. multitentaculata. Liquid chromatography with tandem mass spectrometry analysis revealed that the egg plates contain highly concentrated TTX. The feeding behavior of the pufferfish on the flatworm egg plates was also observed in the aquarium. These results suggest that pufferfish feed on the flatworm egg plate, which enables them to acquire toxicity themselves while providing their offspring with the protective shield of TTX.


Asunto(s)
Platelmintos , Takifugu , Tetrodotoxina/toxicidad , Cigoto/química , Animales , ADN de Helmintos/análisis , Dieta , Platelmintos/genética , ARN Ribosómico 28S/análisis , Tetrodotoxina/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...