Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1881): 20220192, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37246388

RESUMEN

As interest in natural capital grows and society increasingly recognizes the value of biodiversity, we must discuss how ecosystem observations to detect changes in biodiversity can be sustained through collaboration across regions and sectors. However, there are many barriers to establishing and sustaining large-scale, fine-resolution ecosystem observations. First, comprehensive monitoring data on both biodiversity and possible anthropogenic factors are lacking. Second, some in situ ecosystem observations cannot be systematically established and maintained across locations. Third, equitable solutions across sectors and countries are needed to build a global network. Here, by examining individual cases and emerging frameworks, mainly from (but not limited to) Japan, we illustrate how ecological science relies on long-term data and how neglecting basic monitoring of our home planet further reduces our chances of overcoming the environmental crisis. We also discuss emerging techniques and opportunities, such as environmental DNA and citizen science as well as using the existing and forgotten sites of monitoring, that can help overcome some of the difficulties in establishing and sustaining ecosystem observations at a large scale with fine resolution. Overall, this paper presents a call to action for joint monitoring of biodiversity and anthropogenic factors, the systematic establishment and maintenance of in situ observations, and equitable solutions across sectors and countries to build a global network, beyond cultures, languages, and economic status. We hope that our proposed framework and the examples from Japan can serve as a starting point for further discussions and collaborations among stakeholders across multiple sectors of society. It is time to take the next step in detecting changes in socio-ecological systems, and if monitoring and observation can be made more equitable and feasible, they will play an even more important role in ensuring global sustainability for future generations. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.


Asunto(s)
Ciencia Ciudadana , Ecosistema , Biodiversidad , Japón , Conservación de los Recursos Naturales
2.
Front Neurosci ; 16: 993132, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277999

RESUMEN

Increasing evidence has demonstrated that emotional states and intestinal conditions are inter-connected in so-called "brain-gut interactions." Indeed, many psychiatric disorders are accompanied by gastrointestinal symptoms, such as the irritable bowel syndrome (IBS). However, the functional connection remains elusive, partly because there are few useful experimental animal models. Here, we focused on a highly validated animal model of stress-induced psychiatric disorders, such as depression, known as the chronic vicarious social defeat stress (cVSDS) model mice, which we prepared using exposure to repeated psychological stress, thereafter examining their intestinal conditions. In the charcoal meal test and the capsaicin-induced hyperalgesia test, cVSDS model mice showed a significantly higher intestinal transit ratio and increased visceral pain-related behaviors, respectively. These changes persisted over one month after the stress session. On the other hand, the pathological evaluations of the histological and inflammatory scores of naive and cVSDS model mice did not differ. Furthermore, keishikashakuyakuto-a kampo medicine clinically used for the treatment of IBS-normalized the intestinal motility change in cVSDS model mice. Our results indicate that cVSDS model mice present IBS-like symptoms such as chronic intestinal peristaltic changes and abdominal hyperalgesia without organic lesion. We therefore propose the cVSDS paradigm as a novel animal model of IBS with wide validity, elucidating the correlation between depressive states and intestinal abnormalities.

3.
Front Pharmacol ; 13: 826783, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35330835

RESUMEN

Disulfiram is an FDA approved drug for the treatment of alcoholism. The drug acts by inhibiting aldehyde dehydrogenase, an enzyme essential to alcohol metabolism. However, a recent study has demonstrated that disulfiram also potently inhibits the cytoplasmic protein FROUNT, a common regulator of chemokine receptor CCR2 and CCR5 signaling. Several studies have reported that chemokine receptors are associated with the regulation of emotional behaviors in rodents, such as anxiety. Therefore, this study was performed to clarify the effect of disulfiram on emotional behavior in rodents. The anxiolytic-like effects of disulfiram were investigated using an elevated plus-maze (EPM) test, a typical screening model for anxiolytics. Disulfiram (40 or 80 mg/kg) significantly increased the amount of time spent in the open arms of the maze and the number of open arm entries without affecting the total open arms entries. Similar results were obtained in mice treated with a selective FROUNT inhibitor, disulfiram-41 (10 mg/kg). These disulfiram-associated behavioral changes were similar to those observed following treatment with the benzodiazepine anxiolytic diazepam (1.5 mg/kg). Moreover, disulfiram (40 mg/kg) significantly and completely attenuated increased extracellular glutamate levels in the prelimbic-prefrontal cortex (PL-PFC) during stress exposure on the elevated open-platform. However, no effect in the EPM test was seen following administration of the selective aldehyde dehydrogenase inhibitor cyanamide (40 mg/kg). In contrast to diazepam, disulfiram caused no sedation effects in the open-field, coordination disorder on a rotarod, or amnesia in a Y-maze. This is the first report suggesting that disulfiram produces anxiolytic-like effects in rodents. We found that the presynaptic inhibitory effects on glutaminergic neurons in the PL-PFC may be involved in its underlying mechanism. Disulfiram could therefore be an effective and novel anxiolytic drug that does not produce benzodiazepine-related adverse effects, such as amnesia, coordination disorder, or sedation, as found with diazepam. We propose that the inhibitory activity of disulfiram against FROUNT function provides an effective therapeutic option in anxiety.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA