Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Curr Protoc ; 4(4): e1021, 2024 Apr.
Article En | MEDLINE | ID: mdl-38619090

Intracellular bacterial pathogens implement a diverse array of strategies to target host cells and establish infection. For vacuolar pathogens, the process of pathogen-containing vacuole movement within host cells, termed intracellular trafficking, is central to both pathogen survival and infection progression. Typically a process mediated by secreted virulence factors that manipulate the host cytoskeletal machinery, internalized pathogen-containing vacuoles traffic to the site of replication to establish a unique replicative niche, and if applicable, traffic back toward the host cell periphery for cell-to-cell spread. As such, the intracellular positioning of pathogen-containing vacuoles represents a fundamental measure of infection progression. Here, we describe a fluorescence microscopy-based method to quantitatively assess bacterial intracellular positioning, using Salmonella enterica serovar Typhimurium infection of epithelial cells as a model. This experimental approach can be modified to study infection in diverse host cell types, and with a broad array of pathogens. The system can also be adapted to examine the kinetics of infection, identify secreted virulence factors that mediate host trafficking, investigate host factors that are targeted by the pathogen for trafficking, and assess functional domains within a virulence factor responsible for mediating the phenotype. Collectively, these tools can provide fundamental insight into the pathogenesis of a diverse array of intracellular bacterial pathogens, and new host factors that are hijacked to mediate infection. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Culture and preparation of host cells Alternate Protocol: Culture and preparation of host cells to assess host factor contribution to bacterial positioning Basic Protocol 2: Infection of epithelial cells with S. Typhimurium Basic Protocol 3: Fluorescence staining for analysis of bacterial positioning Basic Protocol 4: Fluorescence microscopy analysis of bacterial positioning.


Cytoskeleton , Vacuoles , Biological Transport , Epithelial Cells , Virulence Factors
2.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38673776

Salmonella enterica is a leading cause of bacterial food-borne illness in humans and is responsible for millions of cases annually. A critical strategy for the survival of this pathogen is the translocation of bacterial virulence factors termed effectors into host cells, which primarily function via protein-protein interactions with host proteins. The Salmonella genome encodes several paralogous effectors believed to have arisen from duplication events throughout the course of evolution. These paralogs can share structural similarities and enzymatic activities but have also demonstrated divergence in host cell targets or interaction partners and contributions to the intracellular lifecycle of Salmonella. The paralog effectors SopD and SopD2 share 63% amino acid sequence similarity and extensive structural homology yet have demonstrated divergence in secretion kinetics, intracellular localization, host targets, and roles in infection. SopD and SopD2 target host Rab GTPases, which represent critical regulators of intracellular trafficking that mediate diverse cellular functions. While SopD and SopD2 both manipulate Rab function, these paralogs display differences in Rab specificity, and the effectors have also evolved multiple mechanisms of action for GTPase manipulation. Here, we highlight this intriguing pair of paralog effectors in the context of host-pathogen interactions and discuss how this research has presented valuable insights into effector evolution.


Bacterial Proteins , Host-Pathogen Interactions , Salmonella Infections , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Humans , Host-Pathogen Interactions/genetics , Salmonella Infections/microbiology , Salmonella Infections/metabolism , Salmonella enterica/metabolism , Salmonella enterica/genetics , Salmonella enterica/pathogenicity , Virulence Factors/metabolism , Virulence Factors/genetics , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Animals , Evolution, Molecular
...