Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Pers Med ; 12(2)2022 Feb 11.
Article En | MEDLINE | ID: mdl-35207753

Genomics data are currently being produced at unprecedented rates, resulting in increased knowledge discovery and submission to public data repositories. Despite these advances, genomic information on African-ancestry populations remains significantly low compared with European- and Asian-ancestry populations. This information is typically segmented across several different biomedical data repositories, which often lack sufficient fine-grained structure and annotation to account for the diversity of African populations, leading to many challenges related to the retrieval, representation and findability of such information. To overcome these challenges, we developed the African Genomic Medicine Portal (AGMP), a database that contains metadata on genomic medicine studies conducted on African-ancestry populations. The metadata is curated from two public databases related to genomic medicine, PharmGKB and DisGeNET. The metadata retrieved from these source databases were limited to genomic variants that were associated with disease aetiology or treatment in the context of African-ancestry populations. Over 2000 variants relevant to populations of African ancestry were retrieved. Subsequently, domain experts curated and annotated additional information associated with the studies that reported the variants, including geographical origin, ethnolinguistic group, level of association significance and other relevant study information, such as study design and sample size, where available. The AGMP functions as a dedicated resource through which to access African-specific information on genomics as applied to health research, through querying variants, genes, diseases and drugs. The portal and its corresponding technical documentation, implementation code and content are publicly available.

2.
Comput Struct Biotechnol J ; 19: 5647-5666, 2021.
Article En | MEDLINE | ID: mdl-34745456

Continually emerging resistant strains of malarial parasites to current drugs present challenges. Understanding the underlying resistance mechanisms, especially those linked to allostery is, thus, highly crucial for drug design. This forms the main concern of the paper through a case study of falcipain 2 (FP-2) and its mutations, some of which are linked to artemisinin (ART) drug resistance. Here, we applied a variety of in silico approaches and tools that we developed recently, together with existing computational tools. This included novel essential dynamics and dynamic residue network (DRN) analysis algorithms. We identified six pockets demonstrating dynamic differences in the presence of some mutations. We observed striking allosteric effects in two mutant proteins. In the presence of M245I, a cryptic pocket was detected via a unique mechanism in which Pocket 2 fused with Pocket 6. In the presence of the A353T mutation, which is located at Pocket 2, the pocket became the most rigid among all protein systems analyzed. Pocket 6 was also highly stable in all cases, except in the presence of M245I mutation. The effect of ART linked mutations was more subtle, and the changes were at residue level. Importantly, we identified an allosteric communication path formed by four unique averaged BC hubs going from the mutated residue to the catalytic site and passing through the interface of three identified pockets. Collectively, we established and demonstrated that we have robust tools and a pipeline that can be applicable to the analysis of mutations.

3.
OMICS ; 25(4): 213-233, 2021 04.
Article En | MEDLINE | ID: mdl-33794662

Following the publication of the first human genome, OMICs research, including genomics, transcriptomics, proteomics, and metagenomics, has been on the rise. OMICs studies revealed the complex genetic diversity among human populations and challenged our understandings of genotype-phenotype correlations. Africa, being the cradle of the first modern humans, is distinguished by a large genetic diversity within its populations and rich ethnolinguistic history. However, the available human OMICs tools and databases are not representative of this diversity, therefore creating significant gaps in biomedical research. African scientists, students, and publics are among the key contributors to OMICs systems science. This expert review examines the pressing issues in human OMICs research, education, and development in Africa, as seen through a lens of computational biology, public health relevant technology innovation, critically-informed science governance, and how best to harness OMICs data to benefit health and societies in Africa and beyond. We underscore the disparities between North and Sub-Saharan Africa at different levels. A harmonized African ethnolinguistic classification would help address annotation challenges associated with population diversity. Finally, building on the existing strategic research initiatives, such as the H3Africa and H3ABioNet Consortia, we highly recommend addressing large-scale multidisciplinary research challenges, strengthening research collaborations and knowledge transfer, and enhancing the ability of African researchers to influence and shape national and international research, policy, and funding agendas. This article and analysis contribute to a deeper understanding of past and current challenges in the African OMICs innovation ecosystem, while also offering foresight on future innovation trajectories.


Biomedical Research , Computational Biology , Africa , Ecosystem , Genomics , Humans
...