Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Chemistry ; : e202401645, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38837265

A series of isostructural reticular frameworks with systematic differences on chemical structures allows us to disclose correlations between specific structural factors and properties, providing insights for designing novel porous materials. However, even slight differences in the molecular structure often result in formation of non-isostructural polymorphic frameworks particularly in the case of hydrogen-bonded organic frameworks (HOFs) because the structures of HOFs are based on a subtle balance of reversible interactions. In this study, we found that three simple analogues of tetracarboxylic acids with naphthalene, quinoxaline, and pyrazinopyrazine cores (NT, QX, and PP, respectively) yielded isostructural solvated HOFs (NT-1, QX-1, and PP-1, respectively), where hydrogen-bonded sql-networked sheets were slip-stacked with closely similar manners. These isostructural HOFs underwent structural transformations in different manners upon removal of the guest solvents. Comparison of the crystal structures of the HOFs before and after the transformation revealed that intermolecular interactions of the core significantly affected on rearrangements of hydrogen bonds in the transformation. The results suggest the potential to control the properties and functions of isostructural HOFs by elemental doping.

2.
Angew Chem Int Ed Engl ; 63(24): e202404700, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38577718

The molecular conformation, crystalline morphology, and properties of photochromic organic crystals can be controlled through photoirradiation, making them promising candidates for functional organic materials. However, photochromic porous molecular crystals with a networked framework structure are rare due to the difficulty in maintaining space that allows for photo-induced molecular motion in the crystalline state. This study describes a photo-responsive single crystal based on hydrogen-bonded (H-bonded) network of dihydrodimethylbenzo[e]pyrene derivative 4BDHP. A crystal composed of H-bonded undulate layers, 4BDHP-2, underwent photo-isomerization in the crystalline state due to loose stacking of the layers. Particularly, enantio-pure crystal (S,S)-4BDHP-2 allowed to reveal the structure of the photoisomerized crystal, in which the closed form (4BDHP) and open form (4CPD) were arranged alternately with keeping crystalline periodicity, although side reactions were also implied. The present proof-of-concept system of a photochromic framework that retains crystalline periodicity after photo-isomerization may provide new light-driven porous functional materials.

3.
Chem Commun (Camb) ; 59(47): 7224-7227, 2023 Jun 08.
Article En | MEDLINE | ID: mdl-37221861

Aperture shape and size of flexible hydrogen-bonded organic frameworks (HOF) were statically modulated using various aromatic solvents, and dynamically changed by desorption and adsorption of the solvent molecules.


Hydrogen , Pyrenes , Adsorption , Solvents
4.
Chem Commun (Camb) ; 59(41): 6175-6178, 2023 May 18.
Article En | MEDLINE | ID: mdl-37096325

Chiral resolution of rac-4-cyano-1-aminoindane, a key intermediate of ozanimod, was successfully achieved through a combination of crystallization and enantioselective dissolution with up to 96% ee. The disastereomeric salt with di-p-toluoyl-L-tartaric acid was characterized by the construction of a binary phase diagram and ternary isotherm. Enantioselective dissolution was then employed to further enrich the enantiomer.

5.
Chemistry ; 29(27): e202300441, 2023 May 11.
Article En | MEDLINE | ID: mdl-36896822

Deracemization extended to racemic-compound-forming systems is demonstrated. We present here the first results of an alternative for the resolution of systems that exhibit a stable racemic compound but also a closely related conglomerate-forming system. If the couples of enantiomers forming the racemic compound and the enantiomers of the stable conglomerate can syncrystallize in mirror-related partial solid solutions, it is possible to deracemize the racemic mixture of mixed crystals to access to a single handedness. The evidence for this possibility is given in three examples by using temperature-cycling-induced deracemization.

6.
Angew Chem Int Ed Engl ; 62(1): e202215836, 2023 Jan 02.
Article En | MEDLINE | ID: mdl-36347770

Porous frameworks composed of non-stoichiometrically mixed multicomponent molecules attract much attention from a functional viewpoint. However, their designed preparation and precise structural characterization remain challenging. Herein, we demonstrate that cocrystallization of tetrakis(4-carboxyphenyl)hexahydropyrene and pyrene derivatives (CP-Hp and CP-Py, respectively) yields non-stoichiometric mixed frameworks through networking via hydrogen bonding. The composition ratio of CP-Hp and CP-Py in the framework was determined by single crystalline X-ray crystallographic analysis, indicating that the mixed frameworks were formed over a wide range of composition ratios. Furthermore, microscopic Raman spectroscopy on the single crystal indicates that the components are not uniformly distributed such as ideal solid solution, but are done gradationally or inhomogeneously.

7.
Chemistry ; 28(50): e202201571, 2022 Sep 06.
Article En | MEDLINE | ID: mdl-35708300

Porous organic frameworks possessing interactive free sites in the pore have attracted much attention due to their potential to show the site-originated specific functionalities. Herein, we demonstrate that such a framework could be constructed using a concept of geometrically mismatched frameworks composed of phenanthroline-based tetratopic carboxylic acid CP-Phen. Simple recrystallization of CP-Phen yielded a solvent included porous framework CP-Phen-1, in which three of four carboxy groups form hydrogen-bonded dimer to form a ladder-shaped framework, while the remained one does not participate in framework formation due to geometrical mismatch and interacts with solvent molecules through weak hydrogen-bonding. This result implies that our proposed strategy is effective to provide free interactive sites in porous frameworks. Although CP-Phen-1 undergoes two-step structural transformation presumably accompanied by hydrogen-bond rearrangements upon loss of solvent molecules, the activate framework shows good thermal stability up to 360 °C and selective CO2 adsorption.


Carboxylic Acids , Hydrogen , Adsorption , Carboxylic Acids/chemistry , Hydrogen/chemistry , Hydrogen Bonding , Solvents
8.
Chem Commun (Camb) ; 57(69): 8568-8571, 2021 Sep 07.
Article En | MEDLINE | ID: mdl-34374380

Quasi single-crystal-to-single-crystal transformation of a hydrogen-bonded organic framework (HOF) was accurately revealed and the mechanism was proposed. Interestingly, Br/π interaction allows a snapshot of the intermediate phase of the crystal structure to be solved.

9.
Chemistry ; 25(61): 13837, 2019 Nov 04.
Article En | MEDLINE | ID: mdl-31691398

Invited for the cover of this issue is the group of Gérard Coquerel at Université de Rouen Normandie. The image depicts a pyramid-like tetrahedron of the quaternary phase diagram showing where symmetry breaking can take place. Read the full text of the article at 10.1002/chem.201903338.

10.
Chemistry ; 25(61): 13890-13898, 2019 Nov 04.
Article En | MEDLINE | ID: mdl-31393026

A productive deracemization process based on a quaternary phase diagram study of a naphthamide derivative is reported. New racemic compounds of an atropisomeric naphthamide derivative have been discovered, and a quaternary phase diagram has been constructed that indicated that four solids are stable in a methanol/H2 O solution. Based on the results of a heterogeneous equilibria study showing the stable domain of the conglomerate, a second-order asymmetric transformation was achieved with up to 97 % ee. Furthermore, this methodology showcases the chiral separation of a stable racemic compound forming system and does not suffer from any of the typical limitations of deracemization, although application is still limited to conglomerate-forming systems. We anticipate that this present study will serve as a fundamental model for the design of sophisticated chiral separation processes.

...