Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article En | MEDLINE | ID: mdl-38339104

One of the extracellular matrix proteins, tenascin-C (TN-C), is known to be upregulated in age-related inflammatory diseases such as cancer and cardiovascular diseases. Expression of this molecule is frequently detected, especially in the macrophage-rich areas of atherosclerotic lesions; however, the role of TN-C in mechanisms underlying the progression of atherosclerosis remains obscure. Previously, we found a hidden bioactive sequence termed TNIIIA2 in the TN-C molecule and reported that the exposure of this sequence would be carried out through limited digestion of TN-C by inflammatory proteases. Thus, we hypothesized that some pro-atherosclerotic phenotypes might be elicited from macrophages when they were stimulated by TNIIIA2. In this study, TNIIIA2 showed the ability to accelerate intracellular lipid accumulation in macrophages. In this experimental condition, an elevation of phagocytic activity was observed, accompanied by a decrease in the expression of transporters responsible for lipid efflux. All these observations were mediated through the induction of excessive ß1-integrin activation, which is a characteristic property of the TNIIIA2 sequence. Finally, we demonstrated that the injection of a drug that targets TNIIIA2's bioactivity could rescue mice from atherosclerotic plaque expansion. From these observations, it was shown that TN-C works as a pro-atherosclerotic molecule through an internal TNIIIA2 sequence. The possible advantages of clinical strategies targeting TNIIIA2 are also indicated.


Atherosclerosis , Foam Cells , Plaque, Atherosclerotic , Animals , Mice , Extracellular Matrix Proteins , Fibronectins/metabolism , Foam Cells/metabolism , Lipids , Peptides/chemistry , Tenascin/metabolism
2.
Genes Cells ; 27(12): 719-730, 2022 Dec.
Article En | MEDLINE | ID: mdl-36203316

The induction mechanism of heme oxygenase-1 (HO-1) by heat shock (HS) is still unknown. Here, we discovered that HS activates the HO-1 expression in a mouse hepatoma cell line (Hepa 1-6). Knockdown experiments showed that the HS-induced HO-1 expression was dependent on HS factor 1 (HSF1). A chromatin immunoprecipitation (ChIP) assay demonstrated that the HS-activated HSF1 bound to the HS elements (HSEs) in the upstream enhancer 1 region (E1). Unexpectedly, HS also facilitates the BTB and CNC homology 1 (BACH1) binding to the Maf recognition elements (MAREs) in E1. We examined the effects of a catalytically inactive CRISPR-associated 9 nucleases (dCas9) with short guide RNAs (sgRNAs), and demonstrated that the HSF1 binding to HSEs in E1 was indispensable for the HS-induced HO-1 expression. Heme treatment (HA) dissociates BACH1 from MAREs and facilitated the binding of nuclear factor-erythroid-2-related factor 2 (NRF2) to MAREs. Following treatment with both HS and HA, the HO-1 induction and the HSF1 binding to HSEs in E1 were most notably observed. These results indicate that the HS-induced HO-1 expression is dependent on the HSF1 binding to HSEs in E1, although modulated by the BACH1 and NRF2 binding to MAREs within the same E1.


Heat-Shock Response , Heme Oxygenase-1 , Animals , Mice , Heme Oxygenase-1/genetics , Cell Line , Basic-Leucine Zipper Transcription Factors/genetics , Heat Shock Transcription Factors/genetics
3.
Int J Mol Sci ; 23(3)2022 Feb 04.
Article En | MEDLINE | ID: mdl-35163722

Cholesterol is an essential lipid in vertebrates, but excess blood cholesterol promotes atherosclerosis. In the liver, cholesterol is metabolized to bile acids by cytochrome P450, family 7, subfamily a, polypeptide 1 (CYP7A1), the transcription of which is negatively regulated by the ERK pathway. Fibroblast growth factor 21 (FGF21), a hepatokine, induces ERK phosphorylation and suppresses Cyp7a1 transcription. Taurine, a sulfur-containing amino acid, reportedly promotes cholesterol metabolism and lowers blood and hepatic cholesterol levels. However, the influence of long-term feeding of taurine on cholesterol levels and metabolism remains unclear. Here, to evaluate the more chronic effects of taurine on cholesterol levels, we analyzed mice fed a taurine-rich diet for 14-16 weeks. Long-term feeding of taurine lowered plasma cholesterol and bile acids without significantly changing other metabolic parameters, but hardly affected these levels in the liver. Moreover, taurine upregulated Cyp7a1 levels, while downregulated phosphorylated ERK and Fgf21 levels in the liver. Likewise, taurine-treated Hepa1-6 cells, a mouse hepatocyte line, exhibited downregulated Fgf21 levels and upregulated promoter activity of Cyp7a1. These results indicate that taurine promotes cholesterol metabolism by suppressing the FGF21/ERK pathway followed by upregulating Cyp7a1 expression. Collectively, this study shows that long-term feeding of taurine lowers both plasma cholesterol and bile acids, reinforcing that taurine effectively prevents hypercholesterolemia.


Bile Acids and Salts , Taurine , Animals , Bile Acids and Salts/metabolism , Cholesterol/metabolism , Cholesterol, Dietary/metabolism , Diet , Liver/metabolism , Mice , Taurine/metabolism , Taurine/pharmacology
4.
Exp Gerontol ; 154: 111519, 2021 10 15.
Article En | MEDLINE | ID: mdl-34416335

Aging causes loss of skeletal muscle mass and function, which is called sarcopenia. While sarcopenia impairs the quality of life of older adults and is a major factor in long-term hospitalization, its detailed pathogenic mechanism and preventive measures remain to be identified. Caloric restriction (CR) suppresses age-related physiological and pathological changes in many species and prolongs the average and healthy life expectancy. It has recently been reported that CR suppresses the onset of sarcopenia; however, few studies have analyzed the effects of long-term CR on age-related skeletal muscle atrophy. Thus, we investigated the aging and CR effects on soleus (SOL) muscles of 9-, 24-, and 29-month-old ad libitum-fed rats (9AL, 24AL, and 29AL, respectively) and of 29-month-old CR (29CR) rats. The total muscle cross sectional area (mCSA) of the entire SOL muscle significantly decreased in the 29AL rats, but not in the 24AL rats, compared with the 9AL rats. SOL muscle of the 29AL rats exhibited marked muscle fiber atrophy and increases in the number of muscle fibers with a central nucleus, in fibrosis, and in adipocyte infiltration. Additionally, although the decrease in the single muscle fiber cross-sectional area (fCSA) and the muscle fibers' number occurred in both slow-type and fast-type muscle fibers, the degree of atrophy was more remarkable in the fast-type fibers. However, CR suppressed the muscle fiber atrophy observed in the 29AL rats' SOL muscle by preserving the mCSA and the number of muscle fibers that declined with aging, and by decreasing the number of muscle fibers with a central nucleus, fibrosis and denervated muscle fibers. Overall, these results revealed that advanced aging separately reduces the number and fCSA of each muscle fiber type, but long-term CR can ameliorate this age-related sarcopenic muscle atrophy.


Caloric Restriction , Quality of Life , Aging , Animals , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Muscular Atrophy/prevention & control , Rats
5.
FEBS Open Bio ; 11(1): 185-194, 2021 01.
Article En | MEDLINE | ID: mdl-33277792

Adipocytes, which comprise the majority of white adipose tissue (WAT), are involved in obesity-related pathology via various mechanisms, including disturbed lysosomal enzymatic activity and accumulation of oxidative stress. Sequestosome 1 (SQSTM1/p62) is an autophagy marker that participates in antioxidative responses via the activation of nuclear factor erythroid-derived 2-like 2 (NRF2). Trehalose is a non-reducing disaccharide reported to suppress adipocyte hypertrophy in obese mice and improve glucose tolerance in humans. We recently revealed that trehalose increases SQSTM1 levels and enhances antioxidative capacity in hepatocytes. Here, to further evaluate the mechanism behind the beneficial effects of trehalose on metabolism, we examined SQSTM1 levels, autophagy, and oxidative stress in trehalose-treated adipocytes. We initially confirmed that trehalose increases SQSTM1 transcription and protein levels without affecting autophagy in adipocytes. Trehalose also elevated transcription of several lysosomal genes and the activity of cathepsin L, a lysosomal enzyme, independently of the transcription factor EB. In agreement with our data from hepatocytes, trehalose induced the nuclear translocation of NRF2 and the transcription of its downstream antioxidative genes, resulting in reduced cellular reactive oxygen species levels. Moreover, some cellular trehalose was detected in trehalose-treated adipocytes, implying that extracellular trehalose is taken into cells. These observations reveal the mechanism behind the beneficial effects of trehalose on metabolism and suggest its potential for preventing or treating obesity-related pathology.


Adipocytes/drug effects , Antioxidants/pharmacology , Obesity/drug therapy , Sequestosome-1 Protein/metabolism , Trehalose/pharmacology , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Antioxidants/therapeutic use , Autophagy/drug effects , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Mice , Obesity/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Trehalose/therapeutic use
6.
Oncotarget ; 11(18): 1653-1665, 2020 May 05.
Article En | MEDLINE | ID: mdl-32405340

Poly (ADP-ribose) polymerase 1 (PARP1) plays important roles in single strand DNA repair. PARP1 inhibitors enhance the effects of DNA damaging drugs in homologous recombination-deficient tumors including tumors with breast cancer susceptibility gene (BRCA1) mutation. Nutlin-3a, an analog of cis-imidazoline, inhibits degradation of murine double minute 2 (MDM2) and stabilizes p53. We previously reported that nutlin-3a induces PARP1 degradation in p53-dependent manner in mouse fibroblasts, suggesting nutlin-3a may be a PARP1 suppressor. Here, we investigated the effects of nutlin-3a on PARP1 in MCF-7, a human breast cancer cell line. Consistent with our previous results, nutlin-3a reduced PARP1 levels in dose- and time-dependent manners in MCF-7 cells, but this reduction was suppressed in p53 knockdown cells. RITA, a p53 stabilizer that binds to p53 itself, failed to reduce PARP1 protein levels. Moreover, transient MDM2 knockdown repressed nutlin-3a-mediated PARP1 reduction. The MG132 proteasome inhibitor, and knockdown of checkpoint with forkhead and ring finger domains (CHFR) and ring finger protein 146 (RNF146), E3 ubiquitin ligases targeting PARP1, suppressed nutlin-3a-induced PARP1 reduction. Short-term nutlin-3a treatment elevated the levels of PARylated PARP1, suggesting nutlin-3a promoted PARylation of PARP1, thereby inducing its proteasomal degradation. Furthermore, nutlin-3a-induced PARP1 degradation enhanced DNA-damaging effects of cisplatin in BRCA1 knockdown cells. Our study revealed that nutlin-3a is a PARP1 suppressor that induces PARP1 proteasomal degradation by binding to MDM2 and promoting autoPARylation of PARP1. Further analysis of the mechanisms in nutlin-3a-induced PARP1 degradation may lead to the development of novel PARP1 suppressors applicable for cancers with BRCA1 mutation.

7.
FEBS Open Bio ; 10(3): 306-315, 2020 03.
Article En | MEDLINE | ID: mdl-31965758

White adipose tissue (WAT) is important for maintenance of homeostasis, because it stores energy and secretes adipokines. The WAT of obese people demonstrates mitochondrial dysfunction, accompanied by oxidative stress, which leads to insulin resistance. WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) is a member of the HECT-type E3 family of ubiquitin ligases and is associated with several diseases. Recently, we demonstrated that WWP1 is induced specifically in the WAT of obese mice, where it protects against oxidative stress. Here, we investigated the function of WWP1 in WAT of obese mice by analyzing the phenotype of Wwp1 knockout (KO) mice fed a high-fat diet. The levels of oxidative stress markers were higher in obese WAT from Wwp1 KO mice. Moreover, Wwp1 KO mice had lower activity of citrate synthase, a mitochondrial enzyme. We also measured AKT phosphorylation in obese WAT and found lower levels in Wwp1 KO mice. However, plasma insulin level was low and glucose level was unchanged in obese Wwp1 KO mice. Moreover, both glucose tolerance test and insulin tolerance test were improved in obese Wwp1 KO mice. These findings indicate that WWP1 participates in the antioxidative response and mitochondrial function in WAT, but knockdown of WWP1 improves whole-body glucose metabolism.


Adipose Tissue, White/metabolism , Glucose/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Carbohydrate Metabolism/physiology , Diet, High-Fat , Energy Metabolism/genetics , Female , Homeostasis/genetics , Insulin/metabolism , Insulin Resistance/genetics , Lipid Metabolism/genetics , Male , Mice , Mice, Knockout , Mitochondria/metabolism , Obesity/genetics , Obesity/metabolism , Oxidative Stress/genetics , Phenotype , Ubiquitin-Protein Ligases/metabolism
8.
Sci Rep ; 10(1): 634, 2020 01 20.
Article En | MEDLINE | ID: mdl-31959889

Obesity, caused by the dysfunction of white adipose tissue (WAT), is reportedly accompanied by exacerbation of lipolysis. Perilipin 1 (PLIN1), which forms a coat around lipid droplets, interacts with several lipolysis proteins to regulate lipolysis. While it is known that perilipin family proteins are degraded in lysosomes, the underlying molecular mechanisms related to the downregulated expression of PLIN1 in obese WAT remain unknown. Recently, we found that lysosomal dysfunction originating from an abnormality of cathepsin B (CTSB), a lysosomal representative protease, occurs in obese WAT. Therefore, we investigated the effect of CTSB alterations on PLIN1 expression in obese WAT. PLIN1 protein disappeared and CTSB protein appeared in the cytoplasm of adipocytes in the early stage of obese WAT. Overexpression of CTSB reduced PLIN1 protein in 3T3L1 adipocytes, and treatment with a CTSB inhibitor significantly recovered this reduction. In addition, CTSB overexpression induced the dysfunction of lipolysis in 3T3L1 adipocytes. Therefore, we concluded that upregulation of CTSB induced the reduction of PLIN1 protein in obese WAT, resulting in lipolysis dysfunction. This suggests a novel pathology of lipid metabolism involving PLIN1 in adipocytes and that CTSB might be a therapeutic candidate molecule for obese WAT.


Adipocytes, White/metabolism , Cathepsin B/genetics , Cathepsin B/metabolism , Gene Expression , Lipid Metabolism/genetics , Perilipin-1/genetics , Perilipin-1/metabolism , 3T3 Cells , Animals , Down-Regulation , Lipolysis/genetics , Lysosomes/physiology , Mice
9.
Exp Gerontol ; 118: 55-64, 2019 04.
Article En | MEDLINE | ID: mdl-30620889

Caloric restriction (CR) suppresses age-related pathophysiology and extends lifespan. We recently reported that metabolic remodeling of white adipose tissue (WAT) plays an important role in the beneficial actions of CR; however, the detailed molecular mechanisms of this remodeling remain to be established. In the present study, we aimed to identify CR-induced alterations in the expression of fibroblast growth factor 21 (FGF21), a regulator of lipid and glucose metabolism, and of its downstream signaling mediators in liver and WAT, across the lifespan of rats. We evaluated groups of rats that had been either fed ad libitum or calorie restricted from 3 months of age and were euthanized at 3.5, 9, or 24 months of age, under fed and fasted conditions. The expression of FGF21 mRNA and/or protein increased with age in liver and WAT. Interestingly, in the WAT of 9-month-old fed rats, CR further upregulated FGF21 expression and eliminated the aging-associated reductions in the expression of FGFR1 and beta-klotho (KLB; FGF21 receptor complex). It also enhanced the expression of FGF21 targets, including glucose transporter 1 and peroxisome proliferator-activated receptor (PPAR)γ coactivator-1α. The analysis of transcriptional regulators of Fgf21 suggested that aging and CR might upregulate Fgf21 expression via different mechanisms. In adipocytes in vitro, constitutive FGF21 overexpression upregulated the FGF21 receptor complex and FGF21 targets at the mRNA or protein level. Thus, both aging and CR induced FGF21 expression in rat WAT; however, only CR activated FGF21 signaling. Our results suggest that FGF21 signaling contributes to the CR-induced metabolic remodeling of WAT, likely activating glucose uptake and mitochondrial biogenesis.


Adipose Tissue, White/metabolism , Aging , Caloric Restriction , Fibroblast Growth Factors/physiology , 3T3-L1 Cells , Animals , Fibroblast Growth Factors/blood , Glucose Transporter Type 1/analysis , Male , Mice , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/physiology , Rats , Rats, Wistar , Signal Transduction/physiology
10.
Biochem Biophys Res Commun ; 508(1): 117-122, 2019 01 01.
Article En | MEDLINE | ID: mdl-30471861

White adipose tissue (WAT) is not only the main tissue for energy storage but also an endocrine organ that secretes adipokines. Obesity is the most common metabolic disorder and is related to alterations in WAT characteristics, such as chronic inflammation and increasing oxidative stress. WW domain containing E3 ubiquitin protein ligase 1 (WWP1) is a HECT-type ubiquitin E3 ligase that has been implicated in various pathologies. In the present study, we found that WWP1 was upregulated in obese WAT in a p53-dependent manner. To investigate the functions of WWP1 in adipocytes, a proteome analysis of WWP1 overexpression (OE) and knockdown (KD) 3T3-L1 cells was performed. This analysis showed a positive correlation between WWP1 expression and the abundance of several antioxidative proteins. Thus, we measured reactive oxygen species (ROS) in WWP1 OE and KD cells. Consistent with the proteome results, WWP1 OE reduced ROS levels, whereas KD increased them. These findings indicate that WWP1 is an obesity-inducible E3 ubiquitin ligase that can protect against obesity-associated oxidative stress in WAT.


Adipocytes/metabolism , Ubiquitin-Protein Ligases/metabolism , 3T3-L1 Cells , Adipose Tissue, White/metabolism , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Gene Knockdown Techniques , Genes, p53 , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/etiology , Obesity/genetics , Obesity/metabolism , Oxidative Stress , Proteome/genetics , Proteome/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/genetics , Up-Regulation
11.
Int J Mol Sci ; 19(12)2018 Dec 03.
Article En | MEDLINE | ID: mdl-30513935

Despite the similar phenotypes, including weight loss, reduction of food intake, and lower adiposity, associated with caloric restriction (CR) and cancer cachexia (CC), CC is a progressive wasting syndrome, while mild CR improves whole body metabolism. In the present study, we compared adipose metabolic changes in a novel rat model of CC, mild CR (70% of the food intake of control rats, which is similar to the food consumption of CC rats), and severe CR (30% of the food intake of controls). We show that CC and severe CR are associated with much smaller adipocytes with significantly lower mitochondrial DNA content; but, that mild CR is not. CC and both mild and severe CR similarly upregulated proteins involved in lipolysis. CC also downregulated proteins involved in fatty acid biosynthesis, but mild CR upregulated these. These findings suggest that CC might impair de novo fatty acid biosynthesis and reduce mitochondrial biogenesis, similar to severe CR. We also found that rikkunshito, a traditional Japanese herbal medicine, does not ameliorate the enhanced lipolysis and mitochondrial impairment, but rather, rescues de novo fatty acid biosynthesis, suggesting that rikkunshito administration might have partially similar effects to mild CR.


Adipose Tissue/metabolism , Adipose Tissue/pathology , Cachexia/complications , Cachexia/drug therapy , Caloric Restriction , Drugs, Chinese Herbal/therapeutic use , Neoplasms/complications , Neoplasms/drug therapy , Adipocytes/drug effects , Adipocytes/pathology , Adipose Tissue/drug effects , Animals , Atrophy , Cachexia/genetics , Cachexia/pathology , Cell Size/drug effects , DNA, Mitochondrial/genetics , Drugs, Chinese Herbal/pharmacology , Lipid Metabolism/drug effects , Male , Mitochondria/drug effects , Mitochondria/metabolism , Neoplasms/genetics , Neoplasms/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Nude , Rats, Wistar
12.
Amino Acids ; 50(5): 527-535, 2018 May.
Article En | MEDLINE | ID: mdl-29523960

Alterations in adipocyte characteristics are highly implicated in the pathology of obesity. In a recent article, we demonstrated that high-fat diet-induced obesity impairs lysosomal function, thereby suppressing autophagy in mice white adipose tissue. Taurine, an amino acid naturally contained in the normal diet and existing ubiquitously in tissues, has been reported to improve insulin resistance and chronic inflammation in animal models, but underlying mechanisms remain unclear. From these findings, we hypothesized that improvement of obese pathology by taurine may be mediated through recovery of autophagy. In matured 3T3-L1 mouse adipocytes, treatment with taurine-promoted autophagy. Moreover, taurine-induced nuclear translocation of transcription factor EB (TFEB), a master regulator of autophagy- and lysosome-related factors. As this translocation is regulated by several kinase pathways, including extracellular signal-related kinase 1 and 2 (ERK1/2) and mechanistic target of rapamycin protein kinase complex 1 (MTORC1), we examined related signaling elements. Consequently, taurine-reduced phosphorylation levels of ERK1/2 but did not alter the phosphorylation of MTORC1 pathway-associated adenosine monophosphate-activated protein kinase or ribosomal protein S6 kinase. Taken together, these results suggest that taurine may enhance TFEB nuclear translocation through ERK1/2 to accelerate autophagy. The effect discovered in this study may represent a novel mechanism for the improvement of obesity-related pathology by taurine.


Adipocytes/metabolism , Autophagy/drug effects , MAP Kinase Signaling System/drug effects , Taurine/pharmacology , Adipocytes/cytology , Animals , Cell Line , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Ribosomal Protein S6 Kinases/metabolism
13.
Exp Gerontol ; 104: 127-137, 2018 04.
Article En | MEDLINE | ID: mdl-29410017

The beneficial actions of caloric restriction (CR) are partially mediated by metabolic remodeling of white adipose tissue (WAT). Recently, we showed that CR enhances de novo fatty acid (FA) biosynthesis and mitochondrial biogenesis, particularly in WAT. Here, to better understand the response of WAT to CR, we compare the effects of CR on three WAT depots in rats: retroperitoneal (rWAT), epididymal (eWAT) and subcutaneous (sWAT). Computed tomography and histological analysis showed that CR reduced the volume and average size of rWAT adipocytes. In all WAT depots, CR markedly upregulated the expression of proteins involved in FA biosynthesis in fed rats. In visceral WAT (rWAT and eWAT), hormone-sensitive lipase (lipolytic form) phosphorylation was increased by CR under fed conditions, and decreased by CR under fasted conditions. Conversely, in sWAT, hormone-sensitive lipase phosphorylation was increased by CR under fasted conditions. CR enhanced the effect of feeding on AKT activity in sWAT (indicative of a positive effect on insulin sensitivity) but not in rWAT or eWAT. These data suggest that CR improves lipid metabolism in an insulin signaling-dependent manner in sWAT only. The effects of CR on adipokine (adiponectin and leptin) expression were also different among rWAT, eWAT and sWAT, and CR reduced the gene expression of M2 macrophage markers in rWAT and sWAT, but not in eWAT. We conclude that CR differentially affects the characteristics of WAT depots in rats, including adipocyte size, lipid metabolism, insulin signaling, adipocytokine profile and macrophage infiltration.


Adipose Tissue, White/anatomy & histology , Caloric Restriction , Adipocytes/cytology , Adipokines/metabolism , Analysis of Variance , Animals , Biomarkers/metabolism , Cell Size , Epididymis , Fatty Acids/biosynthesis , Insulin/metabolism , Intra-Abdominal Fat/anatomy & histology , Lipid Metabolism/physiology , Lipolysis/physiology , Male , Rats, Wistar , Signal Transduction/physiology , Subcutaneous Fat/anatomy & histology , Tomography, X-Ray Computed
14.
Redox Biol ; 15: 115-124, 2018 05.
Article En | MEDLINE | ID: mdl-29241092

Dysfunction of autophagy, which regulates cellular homeostasis by degrading organelles and proteins, is associated with pathogenesis of various diseases such as cancer, neurodegeneration and metabolic disease. Trehalose, a naturally occurring nontoxic disaccharide found in plants, insects, microorganisms and invertebrates, but not in mammals, was reported to function as a mechanistic target of the rapamycin (mTOR)-independent inducer of autophagy. In addition, trehalose functions as an antioxidant though its underlying molecular mechanisms remain unclear. In this study, we showed that trehalose not only promoted autophagy, but also increased p62 protein expression, in an autophagy-independent manner. In addition, trehalose increased nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in a p62-dependent manner and enhance expression of its downstream antioxidant factors, heme oxygenase-1 (Ho-1) and nicotinamide adenine dinucleotide phosphate quinone dehydrogenase 1 (Nqo1). Moreover, treatment with trehalose significantly reduced amount of reactive oxygen species. Collectively, these results suggested that trehalose can function as a novel activator of the p62-Keap1/Nrf2 pathway, in addition to inducing autophagy. Therefore, trehalose may be useful to treat many chronic diseases involving oxidative stress and dysfunction of autophagy.


Kelch-Like ECH-Associated Protein 1/genetics , NF-E2-Related Factor 2/genetics , Proto-Oncogene Proteins c-yes/genetics , Trehalose/pharmacology , Animals , Autophagy/genetics , Autophagy-Related Protein 5/genetics , Heme Oxygenase-1/genetics , Humans , Membrane Proteins/genetics , Mice , Mice, Knockout , NAD(P)H Dehydrogenase (Quinone)/genetics , Oxidative Stress/drug effects , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/genetics , Trehalose/metabolism
15.
FEBS Lett ; 591(24): 4067-4073, 2017 12.
Article En | MEDLINE | ID: mdl-29151261

Sirtuin-3 (SIRT3) regulates mitochondrial quality and is involved in the anti-ageing and pro-longevity actions of caloric restriction (CR). Here, we show that CR upregulates the mature form of SIRT3 and mitochondrial intermediate peptidase (MIPEP), a mitochondrial signal peptidase (MtSPase), in white adipose tissue. We also demonstrate that upregulation of mature SIRT3 is dependent on MIPEP in 3T3-L1 cells, suggesting that MIPEP may contribute to the maintenance of mitochondrial quality during CRvia activation of SIRT3. This novel mechanism of SIRT3 activation through MIPEP facilitates the elucidation of additional molecular pathways of CR.


Caloric Restriction , Metalloendopeptidases/physiology , Sirtuin 3/metabolism , 3T3-L1 Cells , Adipose Tissue, White/metabolism , Animals , Enzyme Activation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
16.
Sci Rep ; 7(1): 6949, 2017 07 31.
Article En | MEDLINE | ID: mdl-28761041

Now, the quantification of proinsulin/insulin contents within organisms tends to be evaluated only by enzyme-linked immunosorbent assay (ELISA), although assessing the adequacy of results by some quantification method is important. Remarkably, few scientific papers use detection by Western blotting (WB), another immunological assay, of proinsulin/insulin. We found two problems with quantification of insulin and proinsulin by general WB: the shape of an insulin band in gel electrophoresis is distorted, and the retention potency to a blotting membrane of the peptide hormones (mainly insulin) is low. We solved the first problem by optimizing the sodium dodecyl sulfate concentration in the sample buffer and the second problem by glutaraldehyde fixation following treatment with a blocking solution for a short time. The improvements were confirmed by quantification of proinsulin/insulin in standards, MIN6c4 cell lysates, and MIN6c4 culture supernatants. Furthermore, we showed that the modified WB is applicable to other diabetes-associated peptide hormones: insulin analogs, glucagon, GLP-1s, somatostatins, ghrelins, and pancreatic polypeptide. Our data showed that the modified WB can contribute to qualitative or quantitative analyses of diabetes-associated peptides by providing analytical information based on electrophoresis, although ELISA, which is an almost exclusive method in the quantification of peptide hormones, supplies only numerical data.


Blotting, Western/methods , Diabetes Mellitus/metabolism , Insulin/analysis , Peptide Hormones/analysis , Cell Line , Ghrelin/analysis , Glucagon-Like Peptide 1/analysis , Humans , Pancreatic Polypeptide/analysis , Proinsulin/analysis , Protein Precursors/analysis , Sodium Dodecyl Sulfate/chemistry , Somatostatin/analysis
17.
Aging Cell ; 16(3): 508-517, 2017 06.
Article En | MEDLINE | ID: mdl-28256090

Caloric restriction (CR) can delay onset of several age-related pathophysiologies and extend lifespan in various species, including rodents. CR also induces metabolic remodeling involved in activation of lipid metabolism, enhancement of mitochondrial biogenesis, and reduction of oxidative stress in white adipose tissue (WAT). In studies using genetically modified mice with extended lifespans, WAT characteristics influenced mammalian lifespans. However, molecular mechanisms underlying CR-associated metabolic remodeling of WAT remain unclear. Sterol regulatory element-binding protein-1c (Srebp-1c), a master transcription factor of fatty acid (FA) biosynthesis, is responsible for the pathogenesis of fatty liver (steatosis). Our study showed that, under CR conditions, Srebp-1c enhanced mitochondrial biogenesis via increased expression of peroxisome proliferator-activated receptor gamma coactivator-1α (Pgc-1α) and upregulated expression of proteins involved in FA biosynthesis within WAT. However, via Srebp-1c, most of these CR-associated metabolic alterations were not observed in other tissues, including the liver. Moreover, our data indicated that Srebp-1c may be an important factor both for CR-associated suppression of oxidative stress, through increased synthesis of glutathione in WAT, and for the prolongevity action of CR. Our results strongly suggested that Srebp-1c, the primary FA biosynthesis-promoting transcriptional factor implicated in fatty liver disease, is also the food shortage-responsive factor in WAT. This indicated that Srebp-1c is a key regulator of metabolic remodeling leading to the beneficial effects of CR.


Adipose Tissue, White/metabolism , Aging/metabolism , Caloric Restriction , Fatty Acids/biosynthesis , Sterol Regulatory Element Binding Protein 1/genetics , Animals , Embryo, Mammalian , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Regulation , Glutathione/biosynthesis , Male , Mice , Mice, Knockout , Mitochondria/metabolism , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Primary Cell Culture , Signal Transduction , Sterol Regulatory Element Binding Protein 1/deficiency
18.
Autophagy ; 13(4): 642-653, 2017 Apr 03.
Article En | MEDLINE | ID: mdl-28121218

Whether obesity accelerates or suppresses autophagy in adipose tissue is still debatable. To clarify dysregulation of autophagy and its role in pathologies of obese adipose tissue, we focused on lysosomal function, protease maturation and activity, both in vivo and in vitro. First, we showed that autophagosome formation was accelerated, but autophagic clearance was impaired in obese adipose tissue. We also found protein and activity levels of CTSL (cathepsin L) were suppressed in obese adipose tissue, while the activity of CTSB (cathepsin B) was significantly enhanced. Moreover, cellular senescence and inflammasomes were activated in obese adipose tissue. In 3T3L1 adipocytes, downregulation of CTSL deteriorated autophagic clearance, upregulated expression of CTSB, promoted cellular senescence and activated inflammasomes. Upregulation of CTSB promoted additional activation of inflammasomes. Therefore, we suggest lysosomal dysfunction observed in obese adipose tissue leads to lower autophagic clearance, resulting in autophagosome accumulation. Simultaneously, lysosomal abnormalities, including deteriorated CTSL function and compensatory activation of CTSB, caused cellular senescence and inflammasome activation. Our findings strongly suggest lysosomal dysfunction is involved in early pathologies of obese adipose tissue.


Adipose Tissue, White/pathology , Autophagosomes/metabolism , Lysosomes/metabolism , Obesity/pathology , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Cathepsins/metabolism , Cellular Senescence , Diet, High-Fat , Inflammasomes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/genetics , Up-Regulation/genetics
19.
Exp Gerontol ; 63: 59-66, 2015 Mar.
Article En | MEDLINE | ID: mdl-25616173

The beneficial actions of caloric restriction (CR) could be mediated in part by metabolic remodeling of white adipose tissue (WAT). Recently, we suggested that CR for 6 months increased the expressions of proteins involved in de novo fatty acid (FA) biosynthesis in WAT of 9-month-old rats. Herein, we compared the CR-induced chronological alterations of the expression of mRNAs and/or proteins involved in FA biosynthesis in the WAT and liver of rats subjected to CR starting from 3 months of age and their age-matched controls fed ad libitum. The findings suggested that CR was more effective on FA biosynthesis in WAT than in liver. In WAT, CR markedly increased the expressions of mRNAs and/or proteins involved in FA biosynthesis, including sterol regulatory element-binding protein 1c (SREBP1c), a master transcriptional regulator of FA biosynthesis, throughout the experimental period. Interestingly, the CR-enhanced upregulation was temporally attenuated at 5 months of age. CR markedly increased the nuclear phosphorylated form of Akt only at 3.5 months of age. In contrast, CR significantly reduced the expression of leptin at 9 months of age. The CR-induced upregulation was not observed in obese fa/fa Zucker rats homozygous for nonfunctional leptin receptor. Collectively, these data indicate that the V-shaped chronological alterations in WAT are regulated via SREBP1c, which is probably activated by CR duration-dependent modulation of both insulin and leptin signaling.


Adipose Tissue, White/metabolism , Caloric Restriction , Fatty Acids/biosynthesis , Liver/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Animals , Gene Expression Regulation , Insulin/metabolism , Leptin/metabolism , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Sterol Regulatory Element Binding Protein 1/genetics , Time Factors
20.
Transplantation ; 98(6): 618-24, 2014 Sep 27.
Article En | MEDLINE | ID: mdl-25221900

BACKGROUND: Ischemia-reperfusion (I/R) injury after lung transplantation causes alveolar damage, lung edema, and acute rejection. Poly(adenosine diphosphate-ribose) polymerase (PARP) is a single-stranded DNA repair enzyme that induces apoptosis and necrosis after DNA damage caused by reactive oxygen species. We evaluated tissue protective effects of the PARP inhibitor (PARP-i) PJ34 against pulmonary I/R injury. METHODS: Rats (total n=45) underwent a thoracotomy with left hilar isolation and saline administration (sham group) or thoracotomy with hilar clamping and saline administration (I/R group) or PJ34 administration (PARP-i group). Parameters were measured for 7 days after reperfusion. RESULTS: Pathologic analysis revealed that reperfusion injury was drastically suppressed in the PARP-i group 2 days after reperfusion. Terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick-end labeling-positive cells were significantly decreased in the PARP-i group compared to the I/R group (P<0.05). Accordingly, the wet-to-dry lung ratio in the I/R group was significantly higher compared with the PARP-i group (P=0.025). Four hours after reperfusion, serum tissue necrosis factor-α and interleukin-6 were significantly suppressed in the PARP-i group compared with the I/R group (P<0.05). Serum derivatives of reactive oxygen metabolites increased quickly and remained high in the I/R and PARP-i groups from 4 hr until 7 days after reperfusion. Interestingly, the serum biologic antioxidant potential in the PARP-i group was significantly higher than that in the I/R group from day 2 until day 7. CONCLUSION: The PARP-i decreased inflammation and tissue damage caused by pulmonary I/R injury. These beneficial effects of the PARP-i may be correlated with its antioxidative efficacy.


Lung/enzymology , Phenanthrenes/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors , Reperfusion Injury/drug therapy , Adenosine Triphosphate/metabolism , Animals , Antioxidants/metabolism , Apoptosis , DNA Repair , Inflammation/metabolism , Interleukin-6/blood , Lung/pathology , Lung Transplantation , Male , Oxidative Stress , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Thoracotomy , Time Factors , Tumor Necrosis Factor-alpha/blood
...