Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38559256

RESUMEN

Certain environmental toxins are nucleic acid damaging agents, as are many chemotherapeutics used for cancer therapy. These agents induce various adducts in DNA as well as RNA. Indeed, most of the nucleic acid adducts (>90%) formed due to these chemicals, such as alkylating agents, occur in RNA 1 . However, compared to the well-studied mechanisms for DNA alkylation repair, the biological consequences of RNA damage are largely unexplored. Here, we demonstrate that RNA damage can directly result in loss of genome integrity. Specifically, we show that a human YTH domain-containing protein, YTHDC1, regulates alkylation damage responses in association with the THO complex (THOC) 2 . In addition to its established binding to N 6-methyladenosine (m6A)-containing RNAs, YTHDC1 binds to N 1-methyladenosine (m1A)-containing RNAs upon alkylation. In the absence of YTHDC1, alkylation damage results in increased alkylation damage sensitivity and DNA breaks. Such phenotypes are fully attributable to RNA damage, since an RNA-specific dealkylase can rescue these phenotypes. These R NA d amage-induced DNA b reaks (RDIBs) depend on R-loop formation, which in turn are processed by factors involved in transcription-coupled nucleotide excision repair. Strikingly, in the absence of YTHDC1 or THOC, an RNA m1A methyltransferase targeted to the nucleus is sufficient to induce DNA breaks. Our results uncover a unique role for YTHDC1-THOC in base damage responses by preventing RDIBs, providing definitive evidence for how damaged RNAs can impact genomic integrity.

2.
bioRxiv ; 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37292853

RESUMEN

With the increasing demand for sustainably produced renewable resources, it is important to look towards microorganisms capable of producing bioproducts such as biofuels and bioplastics. Though many systems for bioproduct production are well documented and tested in model organisms, it is essential to look beyond to non-model organisms to expand the field and take advantage of metabolically versatile strains. This investigation centers on Rhodopseudomonas palustris TIE-1, a purple, non-sulfur autotrophic, and anaerobic bacterium capable of producing bioproducts that are comparable to their petroleum-based counterparts. To induce bioplastic overproduction, genes that might have a potential role in the PHB biosynthesis such as the regulator, phaR, and phaZ known for its ability to degrade PHB granules were deleted using markerless deletion. Mutants in pathways that might compete with polyhydroxybutyrate (PHB) production such as glycogen and nitrogen fixation previously created to increase n -butanol production by TIE-1 were also tested. In addition, a phage integration system was developed to insert RuBisCO (RuBisCO form I and II genes) driven by a constitutive promoter P aphII into TIE- 1 genome. Our results show that deletion of the phaR gene of the PHB pathway increases PHB productivity when TIE-1 was grown photoheterotrophically with butyrate and ammonium chloride (NH 4 Cl). Mutants unable to make glycogen or fix dinitrogen gas show an increase in PHB productivity under photoautotrophic growth conditions with hydrogen. In addition, the engineered TIE-1 overexpressing RuBisCO form I and form II produces significantly more polyhydroxybutyrate than the wild type under photoheterotrophy with butyrate and photoautotrophy with hydrogen. Inserting RuBisCO genes into TIE-1 genome is a more effective strategy than deleting competitive pathways to increase PHB production in TIE-1. The phage integration system developed for TIE-1 thus creates numerous opportunities for synthetic biology in TIE-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA