Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
3 Biotech ; 13(5): 163, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37159590

RESUMEN

Nanoengineered nanoparticles have a significant impact on the morphological, physiology, biochemical, cytogenetic, and reproductive yields of agricultural crops. Metal and metal oxide nanoparticles like Ag, Au, Cu, Zn, Ti, Mg, Mn, Fe, Mo, etc. and ZnO, TiO2, CuO, SiO2, MgO, MnO, Fe2O3 or Fe3O4, etc. that found entry into agricultural land, alter the morphological, biochemical and physiological system of crop plants. And the impacts on these parameters vary based on the type of crop and nanoparticles, doses of nanoparticles and its exposure situation or duration, etc. These nanoparticles have application in agriculture as nanofertilizers, nanopesticides, nanoremediator, nanobiosensor, nanoformulation, phytostress-mediator, etc. The challenges of engineered metal and metal oxide nanoparticles pertaining to soil pollution, phytotoxicity, and safety issue for food chains (human and animal safety) need to be understood in detail. This review provides a general overview of the applications of nanoparticles, their potentials and challenges in agriculture for sustainable crop production.

2.
Cells ; 11(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35326448

RESUMEN

More efficient use of soil resources, such as nitrogen (N) and phosphorus (P), can improve plant community resistance and resilience against drought in arid and semi-arid lands. Intercropping of legume and non-legumes can be an effective practice for enhancing P mineralization uptake, and plant nutrient status. However, it remains unclear how intercropping systems using desert plant species impact soil-plant P fractions and how they affect N and water uptake capacity. Alhagi sparsifolia (a legume) and Karelinia caspia (a non-legume) are dominant plant species in the Taklamakan Desert in Xinjiang Province, China. However, there is a lack of knowledge of whether these species, when intercropped, can trigger synergistic processes and mechanisms that drive more efficient use of soil resources. Thus, in a field experiment over two years, we investigated the impact of monoculture and intercropping of these plant species on soil-plant P fractions and soil-plant nutrients. Both plant species' foliar nutrient (N, P, and K) concentrations were higher under monoculture than intercropping (except K in K. caspia). Nucleic acid P was higher in the monoculture plots of A. sparsifolia, consistent with higher soil labile P, while metabolic P was higher in monoculture K. caspia, associated with higher soil moderately labile Pi. However, both species had a higher residual P percentage in the intercropping system. Soils from monoculture and intercropped plots contained similar microbial biomass carbon (MBC), but lower microbial biomass N:microbial biomass phosphorus (MBN:MBP) ratio associated with reduced N-acetylglucosaminidase (NAG) activity in the intercropped soils. This, together with the high MBC:MBN ratio in intercropping and the lack of apparent general effects of intercropping on MBC:MBP, strongly suggest that intercropping improved microbe N- but not P-use efficiency. Interestingly, while EC and SWC were higher in the soil of the K. caspia monoculture plots, EC was significantly lower in the intercropped plots. Plants obtained better foliar nutrition and soil P mineralization in monocultures than in intercropping systems. The possible positive implications of intercropping for reducing soil salinization and improving soil water uptake and microbial N-use efficiency could have advantages in the long term and its utilization should be explored further in future studies.


Asunto(s)
Fabaceae , Fósforo , Agricultura , Suelo , Agua
3.
Plants (Basel) ; 11(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35161298

RESUMEN

The use of phosphorus (P) to alleviate soil nutrient deficiency alters resources in plant and microbial communities, but it remains unknown how mixed and monospecific planting of forest tree species shape soil microbial structure and functions in response to drought and its interplay with phosphorus addition. We investigated the microbial structure and chemical properties of forest soils planted with P. zhennan monoculture, A. cremastogyne monoculture, and their mixed cultures. The three planting systems were exposed to drought (30-35% water reduction) and the combination of drought with P. A well-watered treatment (80-85% water addition) of similar combinations was used as the control. Planting systems shaped the effects of drought on the soil microbial properties leading to an increase in nitrate nitrogen, urease activity, and microbial biomass carbon in the monocultures, but decrease in mixed cultures. In the monoculture of P. zhennan, addition of P to drought-treated soil increased enzyme activities, the concentration of dissolved organic nitrogen, and carbon, leading to increase in the total bacteria, G+ bacteria, and arbuscular mycorrhizal fungi. Except in the drought with P addition treatment, the impact of admixing on total phospholipid fatty acids (PLFAs), bacterial PLFA, and fungi PLFA was synergistic in all treatments. Our findings indicated that in monoculture of P. zhennan and its mixed planting with A. cremastogyne, greater biological activities could be established under drought conditions with the addition of P.

4.
Sci Total Environ ; 771: 144912, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33736162

RESUMEN

Nematodes generally occupy multiple trophic levels in detrital food webs, which play a vital role in energy flow, material conversion and nematodes community structure stability in the underground ecosystem. Sulfur (S) is one of the important soil nutrients, and it plays an important role in the nutrient cycle of grassland ecosystem. However, the impacts of S on soil fauna and subsurface detrital food webs in grassland ecosystems were rarely studied. Accordingly, to investigate the effects of sulfur deposition on soil nematodes and detrital food webs, we conducted a S addition experiment with distinct intensities from 0 to 50 g S m-2 yr-1 (S 0, S 1, S 2, S 5, S 10, S 15, S 20, and S 50) to simulated sulfur deposition in a meadow steppe of northern China. We documented a significant effect of S addition on the diversity and richness of nematodes, and the species richness of soil nematodes was high in the study site. But S addition had no significant effect on the total abundance and dominant species of nematodes (Cervidellus and Aphelenchus). Results of correlation analysis and structural equation modeling consistently indicated that omnivores-predators were significantly affected by sulfur addition. A significant increase in the Structural Index (which indicates food web structure) suggested increased top-down forces and changed community structure, although bacterivores, fungivores, plant parasites did not significantly. The present results suggest that sulfur deposition would change the composition of nematode community, affect the stability of nematode community structure, and increase the disturbance to the underground ecosystem. The study provides that the detailed information of the response of nematode to S deposition can be used to analyze the process of global change affecting the underground ecosystem.


Asunto(s)
Nematodos , Suelo , Animales , China , Ecosistema , Azufre
5.
Ecol Evol ; 10(17): 9474-9485, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32953076

RESUMEN

Studying the pattern of species richness is crucial in understanding the diversity and distribution of organisms in the earth. Climate and human influences are the major driving factors that directly influence the large-scale distributions of plant species, including gymnosperms. Understanding how gymnosperms respond to climate, topography, and human-induced changes is useful in predicting the impacts of global change. Here, we attempt to evaluate how climatic and human-induced processes could affect the spatial richness patterns of gymnosperms in China. Initially, we divided a map of the country into grid cells of 50 × 50 km2 spatial resolution and plotted the geographical coordinate distribution occurrence of 236 native gymnosperm taxa. The gymnosperm taxa were separated into three response variables: (a) all species, (b) endemic species, and (c) nonendemic species, based on their distribution. The species richness patterns of these response variables to four predictor sets were also evaluated: (a) energy-water, (b) climatic seasonality, (c) habitat heterogeneity, and (d) human influences. We performed generalized linear models (GLMs) and variation partitioning analyses to determine the effect of predictors on spatial richness patterns. The results showed that the distribution pattern of species richness was highest in the southwestern mountainous area and Taiwan in China. We found a significant relationship between the predictor variable set and species richness pattern. Further, our findings provide evidence that climatic seasonality is the most important factor in explaining distinct fractions of variations in the species richness patterns of all studied response variables. Moreover, it was found that energy-water was the best predictor set to determine the richness pattern of all species and endemic species, while habitat heterogeneity has a better influence on nonendemic species. Therefore, we conclude that with the current climate fluctuations as a result of climate change and increasing human activities, gymnosperms might face a high risk of extinction.

6.
Sci Total Environ ; 690: 361-369, 2019 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-31299570

RESUMEN

Thinning plays a major role in forest soil carbon cycling. However, the mechanisms governing soil C fluxes, i.e., C input through litterfall and fine root (FR) production and C output through soil heterotrophic respiration (Rh), remain unclear. To fill this gap, we quantified the C fluxes in the topsoil layer (0-20 cm) by measuring litterfall, FR production and total soil respiration (Rs) (Ra (autotrophic respiration) and Rh) at three thinning intensities (control; low-intensity thinning: extraction of 30% of individual trees; high-intensity thinning (HIT): extraction of 70% of individual trees) in a 26-year-old Chinese fir plantation in southern China. In the control plots, the total C input (110 g C m-2 year-1) via litterfall (59 g C m-2 year-1) and FR production (51 g C m-2 year-1) was much lower than the C output via Rh (518 g C m-2 year-1). This finding demonstrated that the soil is a C source (407 g C m-2 year-1). Furthermore, the C source increased with increasing thinning intensity, particularly under HIT, due to the decreased litterfall return and increased soil CO2 emissions through Rh; this increase occurred despite the increased C input from FR production. In addition, the C output via Rs significantly increased by 42% under HIT due to the stimulation of Ra and Rh. Consequently, thinning reduced the topsoil C pool by 7-8%. Redundancy analysis indicated that the soil C fluxes following thinning were driven by increased FR mortality, understory plant biomass and diversity, and microbial biomass carbon (MBC). Overall, our results indicate that heavy thinning increases soil C loss by increasing soil CO2 emissions and decreasing litterfall return, even under substantially increased FR production. This finding suggests that thinning practices should consider the trade-off between soil C inputs and outputs to reduce the impact of thinning on forest soil carbon sequestration.


Asunto(s)
Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , Agricultura , Carbono/análisis , Ciclo del Carbono , Secuestro de Carbono , China , Cunninghamia , Agricultura Forestal , Bosques , Suelo , Árboles
7.
Sci Rep ; 8(1): 9992, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29968765

RESUMEN

Straw mulching is an effective conservation tillage tool that utilizes waste resources and reduces environmental pollution. To determine the optimal levels of quality, placement and quantity of straw mulching, we performed a field experiment that used the Box-Behnken design combined with response surface methodology. The treatments designed for walnut saplings (Juglans regia) considered three independent variables: quality, placement, and quantity of straw mulching. Tree height of walnut saplings (THW) and net photosynthesis rate (NPR) were used as the response variables in a full, quadratic polynomial model. Analysis of variance (ANOVA) results showed that the selected models were significant (P < 0.05), expressing ideal relationships between the independent and dependent variables (R2 ≥ 0.9225). The optimum conditions for the THW and NPR responses were determined to be a straw mulching quality which mixed rice and rapeseed straws, a straw mulching placement which covered the entire soil surface of experimental plots, and a straw mulching quantity applied as 3 kg/m2 (i.e., the low level). This optimized scheme of straw mulching combinations offers an alternate choice for optimizing the growth and potential yield of walnut saplings, but practical field experiments should also be carried out to obtain more site-specific results.


Asunto(s)
Agricultura/métodos , Juglans/crecimiento & desarrollo , China , Contaminación Ambiental/análisis , Fotosíntesis , Suelo/química , Análisis Espacial , Agua/análisis
8.
Sci Total Environ ; 636: 597-609, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-29723833

RESUMEN

Increasing human activities worldwide have significantly altered the natural ecosystems and consequently, the services they provide. This is no exception in Nigeria, where land-use/land-cover has undergone a series of dramatic changes over the years mainly due to the ever-growing large population. However, estimating the impact of such changes on a wide range of ecosystem services is seldom attempted. Thus, on the basis of GlobeLand30 land-cover maps for 2000 and 2010 and using the value transfer methodology, we evaluated changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. The results showed that over the 10-year period, cultivated land sprawl over the forests and savannahs was predominant, and occurred mainly in the northern region of the country. During this period, we calculated an increase in the total ecosystem services value (ESV) in Nigeria from 665.93 billion (2007 US$) in 2000 to 667.44 billion (2007 US$) in 2010, 97.38% of which was contributed by cultivated land. The value of provisioning services increased while regulation, support, recreation and culture services decreased, amongst which, water regulation (-11.01%), gas regulation (-7.13%), cultural (-4.84%) and climate regulation (-4.3%) ecosystem functions are estimated as the most impacted. The increase in the total ESV in Nigeria associated with the huge increase in ecosystem services due to cultivated land expansion may make land-use changes (i.e. the ever-increasing agricultural expansion in Nigeria) appear economically profitable. However, continuous loss of services such as climate and water regulation that are largely provided by the natural ecosystems can result in huge economic losses that may exceed the apparent gains from cultivated land development. Therefore, we advocate that the conservation of the natural ecosystem should be a priority in future land-use management in Nigeria, a country highly vulnerable to climate change and incessantly impacted by natural disasters such as flooding.

9.
Sci Rep ; 8(1): 5644, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618772

RESUMEN

Alnus cremastogyne, a broad-leaved tree endemic to south-western China, has both commercial and restoration importance. However, little is known of its morphological, physiological and biochemical responses to drought and phosphorous (P) application. A randomized experimental design was used to investigate how drought affected A. cremastogyne seedlings, and the role that P applications play in these responses. Drought had significant negative effects on A. cremastogyne growth and metabolism, as revealed by reduced biomass (leaf, shoot and root), leaf area, stem diameter, plant height, photosynthetic rate, leaf relative water content, and photosynthetic pigments, and a weakened antioxidative defence mechanism and high lipid peroxidation level. However, the reduced leaf area and enhanced osmolyte (proline and soluble sugars) accumulation suggests drought avoidance and tolerance strategies in this tree. Applying P significantly improved the leaf relative water content and photosynthetic rate of drought-stressed seedlings, which may reflect increased anti-oxidative enzyme (superoxide dismutase, catalase and peroxidase) activities, osmolyte accumulation, soluble proteins, and decreased lipid peroxidation levels. However, P had only a slight or negligible effect on the well-watered plants. A. cremastogyne is sensitive to drought stress, but P facilitates and improves its metabolism primarily via biochemical and physiological rather than morphological adjustments, regardless of water availability.


Asunto(s)
Antioxidantes/metabolismo , Sequías , Peroxidación de Lípido , Ósmosis , Fósforo/administración & dosificación , Fotosíntesis , Agua/química , Alnus , Biomasa , Clorofila/metabolismo , Hojas de la Planta , Superóxido Dismutasa/metabolismo
10.
Sci Total Environ ; 626: 776-784, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29358146

RESUMEN

A current challenge for ecological research in agriculture is to identify ways in which to improve the resilience of the soil food web to extreme climate events, such as severe rainfall. Plant species composition influence soil biota communities differently, which might affect the recovery of soil food web after extreme rainfall. We compared the effects of rainfall stress up on the soil microbial food web in three planting systems: a monoculture of the focal species Zanthoxylum bungeanum and mixed cultures of Z. bungeanum and Medicago sativa or Z. bungeanum and Glycine max. We tested the effect of the presence of a legume on the recovery of trophic interactions between microorganisms and nematodes after extreme rainfall. Our results indicated that all chemical properties of the soil recovered to control levels (normal rainfall) in the three planting systems 45 days after exposure to extreme rain. However, on day 45, the bulk microbial community differed from controls in the monoculture treatment, but not in the two mixed planting treatments. The nematode community did not fully recover in the monoculture or Z. bungeanum and M. sativa treatments, while nematode populations in the combined Z. bungeanum and G. max treatment were indistinguishable from controls. G. max performed better than M. sativa in terms of increasing the resilience of microbial and nematode communities to extreme rainfall. Soil microbial biomass and nematode density were positively correlated with the available carbon and nitrogen content in soil, demonstrating a link between soil health and biological properties. This study demonstrated that certain leguminous plants can stabilize the soil food web via interactions with soil biota communities after extreme rainfall.


Asunto(s)
Agricultura , Agricultura Forestal , Glycine max/crecimiento & desarrollo , Nematodos , Lluvia , Microbiología del Suelo , Animales , China , Cadena Alimentaria , Medicago sativa/crecimiento & desarrollo , Suelo , Zanthoxylum/crecimiento & desarrollo
11.
Sci Rep ; 6: 37662, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27874081

RESUMEN

An agroforestry experiment was conducted that involved four planting systems: monoculture of the focal species Zanthoxylum bungeanum and mixed cultures of Z. bungeanum and Capsicum annuum, Z. bungeanum and Medicago sativa and Z. bungeanum and Glycine max. Soil microbial food web (microorganisms and nematodes) was investigated under manipulated extreme rainfall in the four planting systems to assess whether presence of neighbor species alleviated the magnitude of extreme rainfall on nutrient uptake of the focal species by increasing the stability of soil food web. Our results indicate that in the focal species and G. max mixed culture, leaf nitrogen contents of the focal species were higher than in the monoculture and in the other mixed cultures under extreme rainfall. This result was mainly due to the significant increase under extreme rainfall of G. max species root biomass, resulting in enhanced microbial resistance and subsequent net nitrogen mineralization rate and leaf nitrogen uptake for the focal species. Differences in functional traits of neighbors had additive effects and led to a marked divergence of soil food-web resistance and nutrient uptake of the focal species. Climate change can indirectly alleviate focal species via its influence on their neighbors.


Asunto(s)
Cadena Alimentaria , Plantas/microbiología , Lluvia , Microbiología del Suelo , Animales , Biomasa , Minerales/análisis , Nematodos/fisiología , Nitrógeno/análisis , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Plantas/parasitología , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...