Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Biol ; 226(19)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37727106

RESUMEN

Changes in temperature alter muscle kinetics and in turn affect whole-organism performance. Some organisms use the elastic recoil of biological springs, structures which are far less temperature sensitive, to power thermally robust movements. For jumping frogs, the use of elastic energy in tendons is facilitated through a geometric latching mechanism that operates through dynamic changes in the mechanical advantage (MA) of the hindlimb. Despite the well-documented use of elastic energy storage, frog jumping is a locomotor behavior that is significantly affected by changes in temperature. Here, we used an in vitro muscle preparation interacting in real time with an in silico model of a legged jumper to understand how changes in temperature affect the flow of energy in a system using a MA latch. We used the plantaris longus muscle-tendon unit (MTU) to power a virtual limb with changing MA and a mass being accelerated through a real-time feedback controller. We quantified the amount of energy stored in and recovered from elastic structures and the additional contribution of direct muscle work after unlatching. We found that temperature altered the duration of the energy loading and recovery phase of the in vitro/in silico experiments. We found that the early phase of loading was insensitive to changes in temperature. However, an increase in temperature did increase the rate of force development, which in turn allowed for increased energy storage in the second phase of loading. We also found that the contribution of direct muscle work after unlatching was substantial and increased significantly with temperature. Our results show that the thermal robustness achieved by an elastic mechanism depends strongly on the nature of the latch that mediates energy flow, and that the relative contribution of elastic and direct muscle energy likely shapes the thermal sensitivity of locomotor systems.


Asunto(s)
Contracción Muscular , Músculo Esquelético , Animales , Temperatura , Contracción Muscular/fisiología , Fenómenos Biomecánicos , Músculo Esquelético/fisiología , Extremidad Inferior , Anuros/fisiología
2.
J Exp Biol ; 224(Pt 1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397796

RESUMEN

Temperature influences many physiological processes that govern life as a result of the thermal sensitivity of chemical reactions. The repeated evolution of endothermy and widespread behavioral thermoregulation in animals highlight the importance of elevating tissue temperature to increase the rate of chemical processes. Yet, movement performance that is robust to changes in body temperature has been observed in numerous species. This thermally robust performance appears exceptional in light of the well-documented effects of temperature on muscle contractile properties, including shortening velocity, force, power and work. Here, we propose that the thermal robustness of movements in which mechanical processes replace or augment chemical processes is a general feature of any organismal system, spanning kingdoms. The use of recoiling elastic structures to power movement in place of direct muscle shortening is one of the most thoroughly studied mechanical processes; using these studies as a basis, we outline an analytical framework for detecting thermal robustness, relying on the comparison of temperature coefficients (Q10 values) between chemical and mechanical processes. We then highlight other biomechanical systems in which thermally robust performance that arises from mechanical processes may be identified using this framework. Studying diverse movements in the context of temperature will both reveal mechanisms underlying performance and allow the prediction of changes in performance in response to a changing thermal environment, thus deepening our understanding of the thermal ecology of many organisms.


Asunto(s)
Contracción Muscular , Lengua , Animales , Fenómenos Biomecánicos , Movimiento , Temperatura
3.
Proc Natl Acad Sci U S A ; 117(19): 10445-10454, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32341147

RESUMEN

The evolution of ballistic tongue projection in plethodontid salamanders-a high-performance and thermally robust musculoskeletal system-is ideal for examining how the components required for extreme performance in animal movement are assembled in evolution. Our comparative data on whole-organism performance measured across a range of temperatures and the musculoskeletal morphology of the tongue apparatus were examined in a phylogenetic framework and combined with data on muscle contractile physiology and neural control. Our analysis reveals that relatively minor evolutionary changes in morphology and neural control have transformed a muscle-powered system with modest performance and high thermal sensitivity into a spring-powered system with extreme performance and functional robustness in the face of evolutionarily conserved muscle contractile physiology. Furthermore, these changes have occurred in parallel in both major clades of this largest family of salamanders. We also find that high-performance tongue projection that exceeds available muscle power and thermal robustness of performance coevolve, both being emergent properties of the same elastic-recoil mechanism. Among the taxa examined, we find muscle-powered and fully fledged elastic systems with enormous performance differences, but no intermediate forms, suggesting that incipient elastic mechanisms do not persist in evolutionary time. A growing body of data from other elastic systems suggests that similar coevolution of traits may be found in other ectothermic animals with high performance, particularly those for which thermoregulation is challenging or ecologically costly.


Asunto(s)
Contracción Muscular/fisiología , Lengua/fisiología , Urodelos/fisiología , Adaptación Biológica/genética , Animales , Evolución Biológica , Fenómenos Biomecánicos , Regulación de la Temperatura Corporal , Conducta Alimentaria/fisiología , Movimiento , Músculos/fisiología , Desarrollo Musculoesquelético , Filogenia , Conducta Predatoria/fisiología , Temperatura , Lengua/metabolismo , Urodelos/anatomía & histología
5.
Integr Comp Biol ; 59(6): 1511-1514, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31584638

RESUMEN

Across multiple evolutionary clades and size scales, organismal movement requires controlling the flow of energy through the body to enhance certain functions. Whether energy is released or absorbed by the organism, proper function hinges on the ability to manipulate both where and when energy is transferred. For example, both power amplification and power attenuation rely on the use of springs for the intermediate storage of energy between the body and the environment; but variation in function is the result of the path and timing of energy flow. In this symposium, we have invited speakers that demonstrate the diversity of mechanisms used to control the flow of energy through the body and into the environment. By bringing together researchers investigating movements in the context of power and energy flow, the major goal of this symposium is to facilitate fresh perspectives on the unifying mechanical themes of energy transfer in organismal movement.


Asunto(s)
Transferencia de Energía , Movimiento , Animales , Fenómenos Biomecánicos
6.
Integr Comp Biol ; 59(6): 1609-1618, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31399734

RESUMEN

As animals get smaller, their ability to generate usable work from muscle contraction is decreased by the muscle's force-velocity properties, thereby reducing their effective jump height. Very small animals use a spring-actuated system, which prevents velocity effects from reducing available energy. Since force-velocity properties reduce the usable work in even larger animals, why don't larger animals use spring-actuated jumping systems as well? We will show that muscle length-tension properties limit spring-actuated systems to generating a maximum one-third of the possible work that a muscle could produce-greatly restricting the jumping height of spring-actuated jumpers. Thus a spring-actuated jumping animal has a jumping height that is one-third of the maximum possible jump height achievable were 100% of the possible muscle work available. Larger animals, which could theoretically use all of the available muscle energy, have a maximum jumping height that asymptotically approaches a value that is about three times higher than that of spring-actuated jumpers. Furthermore, a size related "crossover point" is evident for these two jumping mechanisms: animals smaller than this point can jump higher with a spring-actuated mechanism, while animals larger than this point can jump higher with a muscle-actuated mechanism. We demonstrate how this limit on energy storage is a consequence of the interaction between length-tension properties of muscles and spring stiffness. We indicate where this crossover point occurs based on modeling and then use jumping data from the literature to validate that larger jumping animals generate greater jump heights with muscle-actuated systems than spring-actuated systems.


Asunto(s)
Locomoción/fisiología , Contracción Muscular/fisiología , Animales , Fenómenos Biomecánicos , Cinética , Modelos Biológicos
7.
Integr Comp Biol ; 59(6): 1515-1524, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31397849

RESUMEN

Systems powered by elastic recoil need a latch to prevent motion while a spring is loaded but allow motion during spring recoil. Some jumping animals that rely on elastic recoil use the increasing mechanical advantage of limb extensor muscles to accomplish latching. We examined the ways in which limb morphology affects latching and the resulting performance of an elastic-recoil mechanism. Additionally, because increasing mechanical advantage is a consequence of limb extension that may be found in many systems, we examined the mechanical consequences for muscle in the absence of elastic elements. By simulating muscle contractions against a simplified model of an extending limb, we found that increasing mechanical advantage can limit the work done by muscle by accelerating muscle shortening during limb extension. The inclusion of a series elastic element dramatically improves mechanical output by allowing for additional muscle work that is stored and released from the spring. This suggests that elastic recoil may be beneficial for more animals than expected when assuming peak isotonic power output from muscle during jumping. The mechanical output of elastic recoil depends on limb morphology; long limbs moving small loads maximize total work, but it is done at a low power, whereas shorter limbs moving larger loads do less work at a higher power. This work-power trade-off of limb morphology is true with or without an elastic element. Systems with relatively short limbs may have performance that is robust to variable conditions such as body mass or muscle activation, while long-limbed systems risk complete failure with relatively minor perturbations. Finally, a changing mechanical advantage latch allows for muscle work to be done simultaneously with spring recoil, changing the predictions for spring mechanical properties. Overall, the design constraints revealed by considering the mechanics of this particular latch will inform our understanding of the evolution of elastic-recoil mechanisms and our attempts to engineer similar systems.


Asunto(s)
Extremidades/fisiología , Locomoción/fisiología , Contracción Muscular , Músculo Esquelético/fisiología , Animales , Fenómenos Biomecánicos , Modelos Biológicos
8.
J Exp Biol ; 221(Pt 2)2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29212843

RESUMEN

Many animals use elastic recoil mechanisms to power extreme movements, achieving levels of performance that would not be possible using muscle power alone. Contractile performance of vertebrate muscle depends strongly on temperature, but the release of energy from elastic structures is far less thermally dependent, thus elastic recoil confers thermal robustness to whole-animal performance. Here we explore the role that muscle contractile properties play in the differences in performance and thermal robustness between elastic and non-elastic systems by examining muscle from two species of plethodontid salamanders that use elastically powered tongue projection to capture prey and one that uses non-elastic tongue projection. In species with elastic mechanisms, tongue projection is characterized by higher mechanical power output and thermal robustness compared with tongue projection of closely related genera with non-elastic mechanisms. In vitro and in situ muscle experiments reveal that species differ in their muscle contractile properties, but these patterns do not predict the performance differences between elastic and non-elastic tongue projection. Overall, salamander tongue muscles are similar to other vertebrate muscles in contractile performance and thermal sensitivity. We conclude that changes in the tongue-projection mechanism, specifically the elaboration of elastic structures, are responsible for high performance and thermal robustness in species with elastic tongue projection. This suggests that the evolution of high-performance and thermally robust elastic recoil mechanisms can occur via relatively simple changes to morphology, while muscle contractile properties remain relatively unchanged.


Asunto(s)
Movimiento/fisiología , Contracción Muscular/fisiología , Conducta Predatoria/fisiología , Lengua/fisiología , Urodelos/fisiología , Animales
9.
J Exp Biol ; 220(Pt 11): 2017-2025, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28314747

RESUMEN

Performance of muscle-powered movements depends on temperature through its effects on muscle contractile properties. In vitro stimulation of Cuban treefrog (Osteopilus septentrionalis) plantaris muscles reveals that interactions between force and temperature affect the mechanical work of muscle. At low temperatures (9-17°C), muscle work depends on temperature when shortening at any force, and temperature effects are greater at higher forces. At warmer temperatures (13-21°C), muscle work depends on temperature when shortening with intermediate and high forces (≥30% peak isometric tetanic force). Shortening velocity is most strongly affected by temperature at low temperatures and high forces. Power is also most strongly affected at low temperature intervals, but this effect is minimized at intermediate forces. Effects of temperature on muscle force explain these interactions; force production decreases at lower temperatures, increasing the challenge of moving a constant force relative to the muscle's capacity. These results suggest that animal performance that requires muscles to do work with low forces relative to a muscle's maximum force production will be robust to temperature changes, and this effect should be true whether muscle acts directly or through elastic-recoil mechanisms and whether force is prescribed (i.e. internal) or variable (i.e. external). Conversely, performance requiring muscles to shorten with relatively large forces is expected to be more sensitive to temperature changes.


Asunto(s)
Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Temperatura , Animales , Anuros , Fenómenos Biomecánicos , Estimulación Eléctrica , Contracción Isotónica/fisiología
10.
Artículo en Inglés | MEDLINE | ID: mdl-23052853

RESUMEN

Movement and searching behaviors at diverse spatial scales are important for understanding how animals interact with their environment. Although the shapes of branches and the voids in arboreal habitats seem likely to affect searching behaviors, their influence is poorly understood. To gain insights into how both environmental structure and the attributes of an animal may affect movement and searching, we compared the three-dimensional exploratory movements of snakes in the dark on two simulated arboreal surfaces (disc and horizontal cylinder). Most of the exploratory movements of snakes in the dark were a small fraction of the distances they could reach while bridging gaps in the light. The snakes extended farther away from the edge of the supporting surface at the ends of the cylinder than from the sides of the cylinder or from any direction from the surface of the disc. The exploratory movements were not random, and the surface shape and three-dimensional directions had significant interactive effects on how the movements were structured in time. Thus, the physical capacity for reaching did not limit the area that was explored, but the shape of the supporting surface and the orientation relative to gravity did create biased searching patterns.


Asunto(s)
Boidae/fisiología , Ecosistema , Conducta Exploratoria/fisiología , Marcha/fisiología , Locomoción/fisiología , Árboles/anatomía & histología , Animales , Propiedades de Superficie
11.
J Exp Biol ; 215(Pt 2): 247-55, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22189768

RESUMEN

Bipedal running is common among lizard species, but although the kinematics and performance of this gait have been well characterized, the advantages in biologically relevant situations are still unclear. Obstacle negotiation is a task that is ecologically relevant to many animals while moving at high speeds, such as during bipedal running, yet little is known about how obstacles impact locomotion and performance. We examined the effects of obstacle negotiation on the kinematics and performance of lizards during bipedal locomotion. We quantified three-dimensional kinematics from high-speed video (500 Hz) of six-lined racerunners (Aspidoscelis sexlineata) running on a 3 m racetrack both with and without an obstacle spanning the width of the track. The lizards did not alter their kinematics prior to contacting the obstacle. Although contact with the obstacle caused changes to the hindlimb kinematics, mean forward speed did not differ between treatments. The deviation of the vertical position of the body center of mass did not differ between treatments, suggesting that in the absence of a cost to overall performance, lizards forgo maintaining normal kinematics while negotiating obstacles in favor of a steady body center of mass height to avoid destabilizing locomotion.


Asunto(s)
Lagartos/fisiología , Carrera , Animales , Fenómenos Biomecánicos , Florida , Marcha , Miembro Posterior/fisiología , Grabación de Cinta de Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA