Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Clin Cancer Res ; 30(10): 2085-2096, 2024 May 15.
Article En | MEDLINE | ID: mdl-38466644

PURPOSE: B-cell maturation antigen (BCMA)-chimeric antigen receptor T-cells (CART) improve results obtained with conventional therapy in the treatment of relapsed/refractory multiple myeloma. However, the high demand and expensive costs associated with CART therapy might prove unsustainable for health systems. Academic CARTs could potentially overcome these issues. Moreover, response biomarkers and resistance mechanisms need to be identified and addressed to improve efficacy and patient selection. Here, we present clinical and ancillary results of the 60 patients treated with the academic BCMA-CART, ARI0002h, in the CARTBCMA-HCB-01 trial. PATIENTS AND METHODS: We collected apheresis, final product, peripheral blood and bone marrow samples before and after infusion. We assessed BCMA, T-cell subsets, CART kinetics and antibodies, B-cell aplasia, cytokines, and measurable residual disease by next-generation flow cytometry, and correlated these to clinical outcomes. RESULTS: At cut-off date March 17, 2023, with a median follow-up of 23.1 months (95% CI, 9.2-37.1), overall response rate in the first 3 months was 95% [95% confidence interval (CI), 89.5-100]; cytokine release syndrome (CRS) was observed in 90% of patients (5% grades ≥3) and grade 1 immune effector cell-associated neurotoxicity syndrome was reported in 2 patients (3%). Median progression-free survival was 15.8 months (95% CI, 11.5-22.4). Surface BCMA was not predictive of response or survival, but soluble BCMA correlated with worse clinical outcomes and CRS severity. Activation marker HLA-DR in the apheresis was associated with longer progression-free survival and increased exhaustion markers correlated with poorer outcomes. ARI0002h kinetics and loss of B-cell aplasia were not predictive of relapse. CONCLUSIONS: Despite deep and sustained responses achieved with ARI0002h, we identified several biomarkers that correlate with poor outcomes.


B-Cell Maturation Antigen , Immunotherapy, Adoptive , Multiple Myeloma , Humans , Multiple Myeloma/therapy , Multiple Myeloma/immunology , Multiple Myeloma/drug therapy , B-Cell Maturation Antigen/immunology , B-Cell Maturation Antigen/antagonists & inhibitors , Male , Female , Middle Aged , Aged , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Adult , Biomarkers, Tumor , Receptors, Chimeric Antigen/immunology , Treatment Outcome
2.
Oncoimmunology ; 13(1): 2286820, 2024.
Article En | MEDLINE | ID: mdl-38170044

Although immune-based therapies have revolutionized the management of cancer, novel approaches are urgently needed to improve their outcome. We investigated the role of endogenous steroids in the resistance to cancer immunotherapy, as these have strong immunomodulatory functions. Using a publicly available database, we found that the intratumoral expression of 11 beta-hydroxysteroid dehydrogenase type 1 (HSD11B1), which regenerates inactive glucocorticoids into active glucocorticoids, was associated with poor clinical outcome and correlated with immunosuppressive gene signatures in patients with renal cell carcinoma (RCC). HSD11B1 was mainly expressed in tumor-infiltrating immune myeloid cells as seen by immunohistochemistry in RCC patient samples. Using peripheral blood mononuclear cells from healthy donors or immune cells isolated from the tumor of RCC patients, we showed that the pharmacological inhibition of HSD11B1 improved the response to the immune checkpoint inhibitor anti-PD-1. In a subcutaneous mouse model of renal cancer, the combination of an HSD11B1 inhibitor with anti-PD-1 treatment increased the proportion of tumor-infiltrating dendritic cells. In an intrarenal mouse tumor model, HSD11B1 inhibition increased the survival of mice treated with anti-PD-1. In addition, inhibition of HSD11B1 sensitized renal tumors in mice to immunotherapy with resiquimod, a Toll-like receptor 7 agonist. Mechanistically, we demonstrated that HSD11B1 inhibition combined with resiquimod increased T cell-mediated cytotoxicity to tumor cells by stimulating the antigen-presenting capacity of dendritic cells. In conclusion, these results support the use of HSD11B1 inhibitors to improve the outcome of immunotherapy in renal cancer and highlight the role of the endogenous glucocorticoid metabolism in the efficacy of immunotherapy.


Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Animals , Mice , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Glucocorticoids/metabolism , Carcinoma, Renal Cell/drug therapy , Leukocytes, Mononuclear/metabolism , Kidney Neoplasms/drug therapy , Immunity , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism
3.
Cytotherapy ; 26(3): 221-230, 2024 03.
Article En | MEDLINE | ID: mdl-38260921

Advanced therapy medicinal products (ATMPs) are becoming the new kid on the block for the treatment of a variety of indications with promising results. Despite the academic contribution to the basic and clinical research of ATMPs, undertaking a full product development process is extraordinarily challenging and demanding for academic institutions. Meeting regulatory requirements is probably the most challenging aspect of academic development, considering the limited experience and resources compared with pharmaceutical companies. This review aims to outline the key aspects to be considered when developing novel ATMPs from an academic perspective, based on the results of our own experience and interaction with the Spanish Agency of Medicines and Medical Devices (AEMPS) and European Medicine Agency (EMA) related to a number of academic ATMP initiatives carried out at our center during the last 5 years. Emphasis is placed on understanding the regulatory requirements during the early phases of the drug development process, particularly for the preparation of a Clinical Trial Application. Academic centers usually lack expertise in product-related documentation (such as the Investigational Medicinal Product Dossier), and therefore, early interaction with regulators is crucial to understand their requirements and receive guidance to comply with them. Insights are shared on managing quality, nonclinical, clinical, and risk and benefit documentation, based on our own experience and challenges. This review aims to empower academic and clinical settings by providing crucial regulatory knowledge to smooth the regulatory journey of ATMPs.


Genetic Therapy , Therapies, Investigational
4.
Br J Haematol ; 204(2): 525-533, 2024 02.
Article En | MEDLINE | ID: mdl-37905734

Varnimcabtagene autoleucel (var-cel) is an academic anti-CD19 chimeric antigen receptor (CAR) product used for the treatment of non-Hodgkin lymphoma (NHL) in the CART19-BE-01 trial. Here we report updated outcomes of patients with NHL treated with var-cel. B-cell recovery was compared with patients with acute lymphoblastic leukaemia (ALL). Forty-five patients with NHL were treated. Cytokine release syndrome (any grade) occurred in 84% of patients (4% grade ≥3) and neurotoxicity in 7% (2% grade ≥3). The objective response rate was 73% at Day +100, and the 3-year duration of response was 56%. The 3-year progression-free and overall survival were 40% and 52% respectively. High lactate dehydrogenase was the only covariate with an impact on progression-free survival. The 3-year incidence of B-cell recovery was lower in patients with NHL compared to ALL (25% vs. 60%). In conclusion, in patients with NHL, the toxicity of var-cel was manageable, while B-cell recovery was significantly prolonged compared to ALL. This trial was registered as NCT03144583.


Lymphoma, B-Cell , Lymphoma, Non-Hodgkin , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , Point-of-Care Systems , Lymphoma, B-Cell/therapy , Lymphoma, Non-Hodgkin/therapy , Immunotherapy, Adoptive/adverse effects , Antibodies , Antigens, CD19 , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , T-Lymphocytes
5.
Biomed Pharmacother ; 169: 115775, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37944438

Psychedelics are classical hallucinogen drugs that induce a marked altered state of consciousness. In recent years, there has been renewed attention to the possible use of classical psychedelics for the treatment of certain mental health disorders. However, further investigation to better understand their biological effects in humans, their mechanism of action, and their metabolism in humans is needed when considering the development of future novel therapeutic approaches. Both metabolic and metabolomics studies may help for these purposes. On one hand, metabolic studies aim to determine the main metabolites of the drug. On the other hand, the application of metabolomics in human psychedelics studies can help to further understand the biological processes underlying the psychedelic state and the mechanisms of action underlying their therapeutic potential. This review presents the state of the art of metabolic and metabolomic studies after lysergic acid diethylamide (LSD), mescaline, N,N-dimethyltryptamine (DMT) and ß-carboline alkaloids (ayahuasca brew), 5-methoxy-DMT and psilocybin administrations in humans. We first describe the characteristics of the published research. Afterward, we reviewed the main results obtained by both metabolic and metabolomics (if available) studies in classical psychedelics and we found out that metabolic and metabolomics studies in psychedelics progress at two different speeds. Thus, whereas the main metabolites for classical psychedelics have been robustly established, the main metabolic alterations induced by psychedelics need to be explored. The integration of metabolomics and pharmacokinetics for investigating the molecular interaction between psychedelics and multiple targets may open new avenues in understanding the therapeutic role of psychedelics.


Hallucinogens , Mental Disorders , Humans , Hallucinogens/pharmacology , Lysergic Acid Diethylamide/pharmacology , Lysergic Acid Diethylamide/therapeutic use , Psilocybin/pharmacology , Psilocybin/therapeutic use , N,N-Dimethyltryptamine/therapeutic use , Mental Disorders/drug therapy
6.
Lancet Oncol ; 24(8): 913-924, 2023 08.
Article En | MEDLINE | ID: mdl-37414060

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapy is a promising option for patients with heavily treated multiple myeloma. Point-of-care manufacturing can increase the availability of these treatments worldwide. We aimed to assess the safety and activity of ARI0002h, a BCMA-targeted CAR T-cell therapy developed by academia, in patients with relapsed or refractory multiple myeloma. METHODS: CARTBCMA-HCB-01 is a single-arm, multicentre study done in five academic centres in Spain. Eligible patients had relapsed or refractory multiple myeloma and were aged 18-75 years; with an Eastern Cooperative Oncology Group performance status of 0-2; two or more previous lines of therapy including a proteasome inhibitor, an immunomodulatory agent, and an anti-CD38 antibody; refractoriness to the last line of therapy; and measurable disease according to the International Myeloma Working Group criteria. Patients received an initial fractionated infusion of 3 × 106 CAR T cells per kg bodyweight in three aliquots (0·3, 0·9, and 1·8 × 106 CAR-positive cells per kg intravenously on days 0, 3, and 7) and a non-fractionated booster dose of up to 3 × 106 CAR T cells per kg bodyweight, at least 100 days after the first infusion. The primary endpoints were overall response rate 100 days after first infusion and the proportion of patients developing cytokine-release syndrome or neurotoxic events in the first 30 days after receiving treatment. Here, we present an interim analysis of the ongoing trial; enrolment has ended. This study is registered with ClinicalTrials.gov, NCT04309981, and EudraCT, 2019-001472-11. FINDINGS: Between June 2, 2020, and Feb 24, 2021, 44 patients were assessed for eligibility, of whom 35 (80%) were enrolled. 30 (86%) of 35 patients received ARI0002h (median age 61 years [IQR 53-65], 12 [40%] were female, and 18 [60%] were male). At the planned interim analysis (cutoff date Oct 20, 2021), with a median follow-up of 12·1 months (IQR 9·1-13·5), overall response during the first 100 days from infusion was 100%, including 24 (80%) of 30 patients with a very good partial response or better (15 [50%] with complete response, nine [30%] with very good partial response, and six [20%] with partial response). Cytokine-release syndrome was observed in 24 (80%) of 30 patients (all grade 1-2). No cases of neurotoxic events were observed. Persistent grade 3-4 cytopenias were observed in 20 (67%) patients. Infections were reported in 20 (67%) patients. Three patients died: one because of progression, one because of a head injury, and one due to COVID-19. INTERPRETATION: ARI0002h administered in a fractioned manner with a booster dose after 3 months can provide deep and sustained responses in patients with relapsed or refractory multiple myeloma, with a low toxicity, especially in terms of neurological events, and with the possibility of a point-of-care approach. FUNDING: Instituto de Salud Carlos III (co-funded by the EU), Fundación La Caixa, and Fundació Bosch i Aymerich.


COVID-19 , Multiple Myeloma , Humans , Male , Female , Middle Aged , Multiple Myeloma/drug therapy , Immunotherapy, Adoptive/adverse effects , B-Cell Maturation Antigen , Pilot Projects , Cytokines
7.
Metabolomics ; 19(6): 53, 2023 06 05.
Article En | MEDLINE | ID: mdl-37271779

INTRODUCTION: A decrease in sperm cell count has been observed along the last several decades, especially in the most developed regions of the world. The use of metabolomics to study the composition of the seminal fluid is a promising approach to gain access to the molecular mechanisms underlying this fact. OBJECTIVES: In the present work, we aimed at relating metabolomic profiles of young healthy men to their semen quality parameters obtained from conventional microscopic analysis. METHODS: An untargeted metabolomics approach focusing on low- to mid-polarity compounds was used to analyze a subset of seminal fluid samples from a cohort of over 2700 young healthy men. RESULTS: Our results show that a broad metabolic profiling comprising several families of compounds (including acyl-carnitines, steroids, and other lipids) can contribute to effectively distinguish samples provided by individuals exhibiting low or high absolute sperm counts. CONCLUSION: A number of metabolites involved in sexual development and function, signaling, and energy metabolism were highlighted as being distinctive of samples coming from either group, proving untargeted metabolomics as a promising tool to better understand the pathophysiological processes responsible for male fertility impairment.


Semen Analysis , Semen , Humans , Male , Semen/metabolism , Metabolomics/methods , Spermatozoa/metabolism , Sperm Count
9.
Talanta ; 240: 123149, 2022 Apr 01.
Article En | MEDLINE | ID: mdl-34954616

The use of mass spectrometry methods with triple quadrupole instruments is well established for quantification. However, the preparation of calibration curves can be time-consuming and prone to analytical errors. In this study, an innovative internal calibration (IC) approach using a one-standard calibration with a stable isotope-labeled (SIL) standard version of the endogenous compound was developed. To ensure optimal quantitative performance, the following parameters were evaluated: the stability of the analyte-to-SIL response factor (RF), the chemical and isotopic purities of the SIL, and the instrumental reproducibility. Using six clinically important endogenous steroids and their respective SIL standards, we demonstrated that RFs obtained on different LC-MS platforms were consistent. The quantitative performance of the proposed approach was determined using quality control samples prepared in depleted serum, and showed both satisfactory precision (1.3%-12.4%) and trueness (77.5%-107.0%, with only 3 values outside ±30%). The developed method was then applied to human serum samples, and the results were similar to those obtained with the conventional quantification approach based on external calibration: the Passing-Bablok regression showed a proportional bias of 6.8% and a mean difference of -5.9% between the two methodologies. Finally, we showed that the naturally occurring isotopes of the SIL can be used to provide additional calibration points and increase the accuracy for analytes with low concentrations.


Steroids , Tandem Mass Spectrometry , Calibration , Chromatography, Liquid , Humans , Reproducibility of Results
10.
J Pharm Biomed Anal ; 208: 114450, 2022 Jan 20.
Article En | MEDLINE | ID: mdl-34798391

Carboxylic acid containing compounds (R-COOH) are involved in a large number of biological processes and they are relevant for several pathological processes such as neurodegeneration or cancer. Comprehensive methodologies for the quantitative determination of R-COOH in biological samples are required. In this study we have developed a LC-MS/MS method for the quantification of 20 endogenous R-COOH belonging to different pathways such as kynurenine metabolism, serotoninergic pathway, glycolysis, tricarboxylic acid cycle, dopaminergic pathway, short chain fatty acids and glycine metabolism. The approach included derivatization with o-benzylhydroxylamine (reaction time 1 h), liquid-liquid extraction with ethyl acetate and LC-MS/MS detection (run time 10 min). The method was optimized and validated in 5 different matrices (urine, plasma, saliva, brain and liver) following two different approaches: (i) using surrogate matrices and (ii) using actual human samples by standard additions. A suitable linearity was obtained in the endogenous range of the analytes. Adequate intra and inter-assay accuracies (80-120%) and intra- and inter-assay precisions (<20%) were achieved for almost all analytes in all studied matrices. The method was applied in several scenarios to confirm (i) human urinary changes produced in glycolysis after exercise, (ii) metabolic changes produced in rat brain and plasma by methamphetamine administration and (iii) metabolic alterations in human plasma caused by vitamin B6 deficiency. Additionally, the application of the method allowed for establishing previously unreported alterations in R-COOH metabolites under these conditions. Due to the comprehensive analyte and matrix coverage and the wide applicability of the developed methodology, it can be considered as a suitable tool for the study of R-COOH status in health and disease by targeted metabolomics.


Carboxylic Acids , Tandem Mass Spectrometry , Animals , Chromatography, Liquid , Hydroxylamines , Rats
11.
Biology (Basel) ; 10(8)2021 Aug 17.
Article En | MEDLINE | ID: mdl-34440023

Considered the ß-keto analogue of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy), 3,4-Methylenedioxymethcathinone (methylone) is a synthetic cathinone. Over the years, methylone has been used as a substitute for conventional psychostimulants, such as MDMA. To date, little is known about the human pharmacology of methylone; the only available information has been provided by surveys or published intoxication reports. In the present observational-naturalistic study, we evaluate the acute subjective and physiological effects of methylone after oral self-administration in comparison to MDMA in healthy poly-drug users. Fourteen participants (10 males, 4 females) selected their single oral doses of methylone from 100 to 300 mg (n = 8, mean dose 187.5 mg) or MDMA from 75 to 100 mg (n = 6, mean dose 87.5 mg) based on their experience. Study variables were assessed at 0, 1, 2, and 4 h (h) and included vital signs (non-invasive blood pressure, heart rate, cutaneous temperature) and subjective effects using visual analogue scales (VAS), the 49-item Addiction Research Centre Inventory (ARCI) short form, and the Evaluation of the Subjective Effects of Substances with Abuse Potential (VESSPA-SSE) questionnaire. Additionally, oral fluid concentrations of methylone and MDMA were determined. Acute pharmacological effects produced by methylone followed the prototypical psychostimulant and empathogenic profile associated with MDMA, although they were less intense. Methylone concentrations in oral fluid can be considered a useful biomarker to detect acute exposure in oral fluid. Oral fluid concentrations of MDMA and methylone peaked at 2 h and concentrations of MDMA were in the range of those previously described in controlled studies. Our results demonstrate that the potential abuse liability of methylone is similar to that of MDMA in recreational subjects.

12.
Pharmaceuticals (Basel) ; 14(2)2021 Jan 28.
Article En | MEDLINE | ID: mdl-33525579

Mephedrone (4-methylmethcathinone) is a synthetic cathinone with psychostimulant properties which remains one of the most popular new psychoactive substances (NPS). It is frequently used orally and/or intranasally. To date, no studies have evaluated the acute effects and pharmacokinetics after self-administration of mephedrone orally (ingestion) and intranasally (insufflation) in naturalistic conditions. An observational study was conducted to assess and compare the acute pharmacological effects, as well as the oral fluid (saliva) concentrations of mephedrone self-administered orally and intranasally. Ten healthy experienced drug users (4 females and 6 males) self-administered a single dose of mephedrone, orally (n = 5, 100-200 mg; mean 150 mg) or intranasally (n = 5, 50-100 mg, mean 70 mg). Vital signs (blood pressure, heart rate, and cutaneous temperature) were measured at baseline (0), 1, 2, and 4 h after self-administration. Each participant completed subjective effects questionnaires: A set of Visual Analogue Scales (VAS), the 49-item Addiction Research Centre Inventory (ARCI), and Evaluation of the Subjective Effects of Substances with Abuse Potential (VESSPA-SSE) at baseline, 1, 2, and 4 h after self-administration. Oral fluid and urine were collected during 4 h. Both routes of mephedrone self-administration enhanced ratings of euphoria and well-being effects and increased cardiovascular effects in humans. Although it was at times assessed that the oral route produced greater and larger effects than the intranasal one, concentrations of mephedrone in oral fluid and also the total amount of mephedrone and metabolites in urine showed that concentrations of mephedrone are considerably higher when self-administered intranasally in comparison to orally. Controlled clinical trials are needed to confirm our observational results.

13.
Analyst ; 146(6): 1820-1834, 2021 Mar 21.
Article En | MEDLINE | ID: mdl-33605958

Innovative methodological approaches are needed to conduct human health and environmental risk assessments on a growing number of marketed chemicals. Metabolomics is progressively proving its value as an efficient strategy to perform toxicological evaluations of new and existing substances, and it will likely become a key tool to accelerate chemical risk assessments. However, additional guidance with widely accepted and harmonized procedures is needed before metabolomics can be routinely incorporated in decision-making for regulatory purposes. The aim of this review is to provide an overview of metabolomic strategies that have been successfully employed in toxicity assessment as well as the most promising workflows in a regulatory context. First, we provide a general view of the different steps of regulatory toxicology-oriented metabolomics. Emphasis is put on three key elements: robustness of experimental design, choice of analytical platform, and use of adapted data treatment tools. Then, examples in which metabolomics supported regulatory toxicology outputs in different scenarios are reviewed, including chemical grouping, elucidation of mechanisms of toxicity, and determination of points of departure. The overall intention is to provide insights into why and how to plan and conduct metabolomic studies for regulatory toxicology purposes.


Metabolomics , Toxicology , Humans , Risk Assessment
14.
J Steroid Biochem Mol Biol ; 206: 105797, 2021 02.
Article En | MEDLINE | ID: mdl-33259940

For several decades now, the analysis of steroids has been a key tool in the diagnosis and monitoring of numerous endocrine pathologies. Thus, the available methods used to analyze steroids in biological samples have dramatically evolved over time following the rapid pace of technology and scientific knowledge. This review aims to synthetize the advances in steroids' analysis, from classical approaches considering only a few steroids or a limited number of steroid ratios, up to the new steroid profiling strategies (steroidomics) monitoring large sets of steroids in biological matrices. In this context, the use of liquid chromatography coupled to mass spectrometry has emerged as the technique of choice for the simultaneous determination of a high number of steroids, including phase II metabolites, due to its sensitivity and robustness. However, the large dynamic range to be covered, the low natural abundance of some key steroids, the selectivity of the analytical methods, the extraction protocols, and the steroid ionization remain some of the current challenges in steroid analysis. This review provides an overview of the different analytical workflows available depending on the number of steroids under study. Special emphasis is given to sample treatment, acquisition strategy, data processing, steroid identification and quantification using LC-MS approaches. This work also outlines how the availability of steroid standards, the need for complementary analytical strategies and the improvement of calibration approaches are crucial for achieving complete steroidome quantification.


Chromatography, Liquid/trends , Endocrine System Diseases/blood , Steroids/isolation & purification , Tandem Mass Spectrometry/trends , Chromatography, High Pressure Liquid , Endocrine System Diseases/pathology , Humans , Steroids/blood
15.
Front Pharmacol ; 11: 233, 2020.
Article En | MEDLINE | ID: mdl-32256350

2,5-Dimethoxy-4-ethylphenethylamine (2C-E) is psychedelic phenylethylamine, with a chemical structure similar to mescaline, used as new psychoactive substance (NPS). It inhibits norepinephrine and serotonin uptake and, more relevant, acts as a partial agonist of the serotonin 2A (5-HT2 A), 2B (5-HT2 B), and (5-HT2 C) receptors. Consumers have reported that 2C-E induces mild-moderate psychedelic effects, but its pharmacology in humans, including pharmacological effects and pharmacokinetics, have not yet studied. To assess the acute effects of 2C-E on physiological and subjective effects and evaluate its pharmacokinetics, an observational study was carried-out. Ten recreational users of psychedelics self-administered a single oral dose of 2C-E (6.5, 8, 10, 15, or 25 mg). Blood pressure and heart rate were evaluated at baseline, 2, 4, and 6 h post-administration. Three rating scales were administered to evaluate subjective effects: a set of Visual Analog Scales (VAS), the 49-item short form version of the Addiction Research Centre Inventory (ARCI), and the Evaluation of the Subjective Effects of Substances with Abuse Potential (VESSPA-SSE) at baseline, 2, 4, and 6 h after self-administration. To assess 2C-E concentrations oral fluid (saliva) was collected during 6 h. 2C-E induced primarily alterations in perceptions, hallucinations, and euphoric-mood. Saliva maximal concentrations were achieved 2 h after self-administration. Administration of oral 2C-E at recreational doses produces a group of psychedelic-like effects such to 2C-B and other serotonin-acting drugs.

16.
Drug Test Anal ; 12(6): 785-797, 2020 Jun.
Article En | MEDLINE | ID: mdl-31950617

The constant legal adaptation of new psychoactive substances (NPS), challenges their evaluation in different fields. In sports, NPS are prohibited in competition with a reporting limit (RL) of 50 ng/mL for the parent compound or a metabolite. However, there is a lack of comprehensive methodologies and excretion studies for monitoring NPS. This work aims to develop an analytical methodology for the NPS quantification and to evaluate the suitability of monitoring the urinary parent stimulants after NPS misuse. A method for the quantification of 14 common NPS was developed and validated. The method was found to be linear in the range 1-1000 ng/mL, and was shown to be accurate and precise. A lowest limit of quantification (LLOQ) of 1 ng/mL was established for all analytes except for benzylpiperazine (5 ng/mL). The method was able to confirm the identity of the analytes at the LLOQ for most NPS. The methodology was applied to the quantification of the parent compound in urine samples collected from an observational study where several healthy volunteers (n ≥ 6 per drug) ingested active doses of mephedrone (MEPH), methylone (MDMC), 2,5-dimetoxy-4-ethylphenetylamine (2C-E), or 6-(2-aminopropyl)benzofuran (6-APB). It was observed that for MDMC and 6-APB, the quantification of the urinary parent drug at the current RL is a proper strategy for detecting their misuse. However, this strategy seems to be insufficient for evaluating MEPH and 2C-E misuse. Monitoring the most abundant metabolite of MEPH (4'-carboxy-MEPH) and the reduction of the RL to 10 ng/mL for the 2C-E evaluation are proposed.


Central Nervous System Stimulants/urine , Doping in Sports/methods , Psychotropic Drugs/urine , Substance Abuse Detection/methods , Adult , Chromatography, High Pressure Liquid , Female , Humans , Illicit Drugs , Limit of Detection , Male , Mass Spectrometry , Methamphetamine/analogs & derivatives , Methamphetamine/urine , Prospective Studies , Reference Standards , Reproducibility of Results
17.
Article En | MEDLINE | ID: mdl-31841978

Steroids are essential hormones that play a crucial role in homeostasis of many biological processes including sexual development, spermatogenesis, sperm physiology and fertility. Although steroids have been largely studied in many biological matrices (such as urine and plasma), there is very limited information of the steroid content and their study as potential indicators of the quality of the seminal fluid. In this study, a LC-HRMS (liquid chromatography-high resolution mass spectrometry) strategy has been developed in order to obtain the extended steroid profile of human seminal fluid. A comparison between supported liquid extraction (SLE) and solid liquid extraction (SPE) was carried out and the chosen SPE method was further optimized to evidence the largest possible number of compounds. Steroids were automatically annotated by using DynaStI, a publicly available retention time prediction tool developed in our lab, to match the experimental data (i.e. accurate mass and tR). Altogether, these resources allowed us to develop a post-targeted approach able to consistently detect 41 steroids in seminal fluid (with half of them being androgens). Such steroid pattern was found to be stable across different extraction times and injection days. In addition to accurate mass and retention time, the identity of 70% of the steroids contained in such steroid profile was confirmed by comparing their fragmentation patterns in real samples to those of pure commercial standards. Finally, the workflow was applied to compare and distinguish the steroid profile in seminal fluid from healthy volunteers (n = 7, with one of them being a vasectomized subject). In all, the developed steroidomics strategy allows to reliably monitor an extended panel of 41 steroids in human seminal fluid.


Chromatography, Liquid/methods , Mass Spectrometry/methods , Semen/chemistry , Steroids/analysis , Humans , Male , Metabolome , Metabolomics , Semen/metabolism , Solid Phase Extraction , Steroids/isolation & purification
18.
Clin Pharmacol Ther ; 106(3): 596-604, 2019 09.
Article En | MEDLINE | ID: mdl-30815856

Mephedrone (MEPH), the most widely consumed synthetic cathinone, has been associated with acute toxicity episodes. The aim of this report was to study its metabolic disposition and the impact of genetic variation of CYP2D6 on MEPH metabolism, in a dose range compatible with its recreational use. A randomized, crossover, phase I clinical trial was performed. Subjects received 50 and 100 mg (n = 3) and 150 and 200 mg (n = 6) of mephedrone and were genetically and phenotypically characterized for the CYP2D6 allelic variation. Our results showed a linear kinetics of mephedrone at the dose range assayed: plasma concentrations, cardiovascular and subjective effects, and blood serotonin concentrations all correlated in a dose-dependent manner. Mephedrone metabolic disposition is mediated by CYP2D6. Mephedrone pharmacology presented a linear dose-dependence within the range of doses tested. The metabolism of mephedrone by CYP2D6 implies that recreational users with no or low CYP2D6 functionality are exposed to unwanted acute toxicity episodes.


Cytochrome P-450 CYP2D6/metabolism , Illicit Drugs/pharmacokinetics , Methamphetamine/analogs & derivatives , Area Under Curve , Cross-Over Studies , Cytochrome P-450 CYP2D6/genetics , Dose-Response Relationship, Drug , Humans , Illicit Drugs/pharmacology , Metabolic Clearance Rate , Methamphetamine/pharmacokinetics , Methamphetamine/pharmacology , Phenotype , Serotonin/metabolism
19.
Front Pharmacol ; 10: 1588, 2019.
Article En | MEDLINE | ID: mdl-32063845

Mephedrone (4-MMC, mephedrone) is a synthetic cathinone derivative included in the class of new psychoactive substances. It is commonly used simultaneously with alcohol (ethanol). The aim of the present study was to evaluate the interactions on subjective, cardiovascular and hormone effects and pharmacokinetics between mephedrone and alcohol in humans. Eleven male volunteers participated as outpatients in four experimental sessions in a double-blind, randomized, cross-over, and placebo-controlled clinical trial. Participants received a single oral dose of 200 mg of mephedrone plus 0.8 g/kg of alcohol (combination condition); 200 mg of mephedrone plus placebo alcohol (mephedrone condition); placebo mephedrone plus 0.8 g/kg of ethanol (alcohol condition); and placebo mephedrone plus placebo alcohol (placebo condition). Outcome variables included physiological (blood pressure, heart rate, temperature, and pupil diameter), psychomotor (Maddox wing), subjective (visual analogue scales, Addiction Research Center Inventory 49 item short form, and Valoración de los Efectos Subjetivos de Sustancias con Potencial de Abuso questionnaire), and pharmacokinetic parameters (mephedrone and ethanol concentrations). The study was registered in ClinicalTrials.gov, number NCT02294266. The mephedrone and alcohol combination produced an increase in the cardiovascular effects of mephedrone and induced a more intense feeling of euphoria and well-being in comparison to the two drugs alone. Mephedrone reduced the sedative effects produced by alcohol. These results are similar to those obtained when other psychostimulants such as amphetamines and 3,4-methylenedioxymethamphetamine are combined simultaneously with alcohol. The abuse liability of mephedrone combined with alcohol is greater than that induced by mephedrone alone.

20.
J Psychopharmacol ; 33(3): 347-354, 2019 03.
Article En | MEDLINE | ID: mdl-30451567

BACKGROUND: The unprecedented proliferation of new psychoactive substances (NPS) threatens public health and challenges drug policy. Information on NPS pharmacology and toxicity is, in most cases, unavailable or very limited and, given the large number of new compounds released on the market each year, their timely evaluation by current standards is certainly challenging. AIMS: We present here a metabolomics-targeted approach to predict the pharmacological profile of NPS. METHODS: We have created a machine learning algorithm employing the quantification of monoamine neurotransmitters and steroid hormones in rats to predict the similarity of new drugs to classical ones of abuse (MDMA (3,4-methyl enedioxy methamphetamine), methamphetamine, cocaine, heroin and Δ9-tetrahydrocannabinol). RESULTS: We have characterized each classical drug of abuse and two examples of NPS (mephedrone and JWH-018) following alterations observed in the targeted metabolome profile (monoamine neurotransmitters and steroid hormones) in different brain areas, plasma and urine at 1 h and 4 h post drug/vehicle administration. As proof of concept, our model successfully predicted the pharmacological profile of a synthetic cannabinoid (JWH-018) as a cannabinoid-like drug and synthetic cathinone (mephedrone) as a MDMA-like psychostimulant. CONCLUSION: Our approach allows a fast NPS pharmacological classification which will benefit both drug risk evaluation policies and public health.


Brain/drug effects , Machine Learning , Metabolomics/methods , Psychotropic Drugs/pharmacology , Algorithms , Animals , Brain/metabolism , Cannabinoids/pharmacology , Hallucinogens/pharmacology , Male , Methamphetamine/analogs & derivatives , Methamphetamine/pharmacology , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Rats , Rats, Wistar
...