Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Intervalo de año de publicación
1.
Langmuir ; 40(23): 12167-12178, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38808371

RESUMEN

Gold nanoparticles (AuNPs) hold promise in biomedicine, but challenges like aggregation, protein corona formation, and insufficient biocompatibility must be thoroughly addressed before advancing their clinical applications. Designing AuNPs with specific protein corona compositions is challenging, and strategies for corona elimination, such as coating with polyethylene glycol (PEG), have limitations. In this study, we introduce a commercially available zwitterionic derivative of glutathione, glutathione monoethyl ester (GSHzwt), for the surface coating of colloidal AuNPs. Particles coated with GSHzwt were investigated alongside four other AuNPs coated with various ligands, including citrate ions, tiopronin, glutathione, cysteine, and PEG. We then undertook a head-to-head comparison of these AuNPs to assess their behavior in biological fluid. GSHzwt-coated AuNPs exhibited exceptional resistance to aggregation and protein adsorption. The particles could also be readily functionalized with biotin and interact with streptavidin receptors in human plasma. Additionally, they exhibited significant blood compatibility and noncytotoxicity. In conclusion, GSHzwt provides a practical and easy method for the surface passivation of AuNPs, creating "stealth" particles for potential clinical applications.


Asunto(s)
Glutatión , Oro , Nanopartículas del Metal , Propiedades de Superficie , Oro/química , Nanopartículas del Metal/química , Glutatión/química , Humanos , Tamaño de la Partícula , Adsorción , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología
2.
Langmuir, v. 40, n. 23, 12167−12178, mai. 2024
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5431

RESUMEN

Gold nanoparticles (AuNPs) hold promise in biomedi-cine, but challenges like aggregation, protein corona formation, andinsufficient biocompatibility must be thoroughly addressed beforeadvancing their clinical applications. Designing AuNPs with specificprotein corona compositions is challenging, and strategies for coronaelimination, such as coating with polyethylene glycol (PEG), havelimitations. In this study, we introduce a commercially availablezwitterionic derivative of glutathione, glutathione monoethyl ester(GSHzwt), for the surface coating of colloidal AuNPs. Particles coatedwith GSHzwt were investigated alongside four other AuNPs coated withvarious ligands, including citrate ions, tiopronin, glutathione, cysteine,and PEG. We then undertook a head-to-head comparison of theseAuNPs to assess their behavior in biological fluid. GSHzwt-coated AuNPsexhibited exceptional resistance to aggregation and protein adsorption. The particles could also be readily functionalized with biotinand interact with streptavidin receptors in human plasma. Additionally, they exhibited significant blood compatibility andnoncytotoxicity. In conclusion, GSHzwt provides a practical and easy method for the surface passivation of AuNPs, creating “stealth”particles for potential clinical applications.

3.
Int J Biol Macromol ; 252: 126453, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37619683

RESUMEN

Serine proteases play crucial biological roles and have their activity controlled by inhibitors, such as the EcTI, a serine protease inhibitor purified from Enterolobium contortisiliquum seeds, which has anticancer activity. This study aimed to conjugate EcTI with quantum dots (QDs), fluorophores with outstanding optical properties, and investigate the interaction of QDs-EcTI nanoprobe with cancer cells. The conjugation was evaluated by fluorescence correlation spectroscopy (FCS) and fluorescence microplate assay (FMA). EcTI inhibitory activity after interaction with QDs was also analyzed. From FCS, the conjugate presented a hydrodynamic diameter about 4× greater than bare QDs, suggesting a successful conjugation. This was supported by FMA, which showed a relative fluorescence intensity of ca. 3815% for the nanosystem, concerning bare QDs or EcTI alone. The EcTI inhibitory activity remained intact after its interaction with QDs. From flow cytometry analyses, approximately 62% of MDA-MB-231 and 90% of HeLa cells were labeled with the QD-EcTI conjugate, suggesting that their membranes have different protease levels to which EcTI exhibits an affinity. Concluding, the QD-EcTI represents a valuable nanotool to study the interaction of this inhibitor with cancer cells using fluorescence-based techniques with the potential to unravel the intricate dynamics of interplays between proteases and inhibitors in cancer biology.


Asunto(s)
Fabaceae , Neoplasias , Puntos Cuánticos , Humanos , Inhibidores de Tripsina/farmacología , Células HeLa , Fabaceae/química , Serina Proteasas , Colorantes
4.
Chem Res Toxicol ; 35(9): 1558-1569, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36018252

RESUMEN

Ultrasmall gold nanoparticles (usNPs) and nanoclusters are an emerging class of nanomaterials exhibiting distinctive physicochemical properties and in vivo behaviors. Although understanding the interactions of usNPs with blood components is of fundamental importance to advance their clinical translation, currently, little is known about the way that usNPs interact with the hemostatic system. This study describes the effects of a model anionic p-mercaptobenzoic acid-coated usNP on the coagulation cascade, with particular emphasis on the contact pathway. It is found that in a purified system, the anionic usNPs bind to and activate factor XII (FXII). The formed usNP-FXII complexes are short-lived (residence time of ∼10 s) and characterized by an affinity constant of ∼200 nM. In human plasma, the anionic usNPs activate the contact pathway and promote coagulation. The usNPs also exhibit anticoagulant activity in plasma by interfering with the thrombin-mediated cleavage of fibrinogen. Taken together, these findings establish that anionic usNPs can disturb the normal hemostatic balance, which in turn may hinder their clinical translation. Finally, it is shown that usNPs can be designed to be nearly inert in plasma by surface coating with the natural peptide glutathione.


Asunto(s)
Hemostáticos , Nanopartículas del Metal , Anticoagulantes/farmacología , Factor XII/química , Factor XII/metabolismo , Fibrinógeno , Glutatión , Oro/química , Oro/farmacología , Humanos , Nanopartículas del Metal/química , Trombina/metabolismo
5.
Biochem Biophys Rep ; 25: 100876, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33364447

RESUMEN

This study focused on the characterization of a novel cysteine proteinase inhibitor from Enterolobium contortisiliquum seeds targeting the inhibition of the growth of Callosobruchus maculatus larvae, an important cosmopolitan pest of the cowpea Vigna unguiculata during storage. The inhibitor was isolated by ion-exchange besides of size exclusion chromatography. EcCI molecular mass is 19,757 Da, composed of two polypeptide chains. It strongly inhibits papain (Kiapp 0.036 nM) and proteinases from the midguts of C. maculatus (80 µg mL-1, 60% inhibition). The inhibitory activity is reduced by 40% after a heat treatment at 100 °C for 2 h. The protein displayed noxious activity at 0.5% and 1% (w/w) when incorporated in artificial seeds, reducing larval mass in 87% and 92%, respectively. Treatment of C. maculatus larvae with conjugated EcCI-FIT and subsequent biodistribution resulted in high fluorescence intensity in midguts and markedly low intensity in malpighian tubules and fat body. Small amounts of labeled proteins were detected in larvae feces. The detection of high fluorescence in larvae midguts and low fluorescence in their feces indicate the retention of the FITC conjugated EcCI inhibitor in larvae midguts. These results demonstrate the potential of the natural protein from E. contortisiliquum to inhibit the development of C. maculatus.

6.
Cancer Lett ; 491: 108-120, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-32841713

RESUMEN

Breast cancer is the most common malignant tumor among women worldwide, and triple-negative breast cancer is the most aggressive type of breast cancer, which does not respond to hormonal therapies. The protease inhibitor, EcTI, extracted from seeds of Enterolobium contortisiliquum, acts on the main signaling pathways of the MDA-MB-231 triple-negative breast cancer cells. This inhibitor, when bound to collagen I of the extracellular matrix, triggers a series of pathways capable of decreasing the viability, adhesion, migration, and invasion of these cells. This inhibitor can interfere in the cell cycle process through the main signaling pathways such as the adhesion, Integrin/FAK/SRC, Akt, ERK, and the cell death pathway BAX and BCL-2. It also acts by reducing the main inflammatory cytokines such as TGF-α, IL-6, IL-8, and MCP-1, besides NFκB, a transcription factor, responsible for the aggressive and metastatic characteristics of this type of tumor. Thus, the inhibitor was able to reduce the main processes of carcinogenesis of this type of cancer.


Asunto(s)
Citocinas/antagonistas & inhibidores , Fabaceae/química , Glicosaminoglicanos/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Inhibidores de Tripsina/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colágeno Tipo I/metabolismo , Citocinas/biosíntesis , Femenino , Humanos , Metaloproteinasas de la Matriz/metabolismo , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Inhibidores de Tripsina/uso terapéutico
7.
Langmuir ; 36(27): 7991-8001, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32590899

RESUMEN

Nanomaterials displaying well-tailored sizes and surface chemistries can provide novel ways with which to modulate the structure and function of enzymes. Recently, we showed that gold nanoparticles (AuNPs) in the ultrasmall size regime could perform as allosteric effectors inducing partial inhibition of thrombin activity. We now find that the nature of the AuNP surface chemistry controls the interactions to the anion-binding exosites 1 and 2 on the surface of thrombin, the allosterically induced changes to the active-site conformation, and, by extension, the enzymatic activity. Ultrasmall AuNPs passivated with p-mercaptobenzoic acid ligands (AuMBA) and a peptide-based (Ac-ECYN) biomimetic coat (AuECYN) were utilized in our investigations. Remarkably, we found that while AuMBA binds to exosites 1 and 2, AuECYN interacts primarily with exosite 2. It was further established that AuMBA behaves as a "mild denaturant" of thrombin leading to catalytic dysfunction over time. Conversely, AuECYN resembles a proper allosteric effector leading to partial and reversible inhibition of the activity. Collectively, our findings reveal how the distinct binding modes of different AuNP types may uniquely influence thrombin structure and catalysis. The present study further contributes to our understanding of how synthetic nanomaterials could be exploited in the allosteric regulation of enzymes.


Asunto(s)
Nanopartículas del Metal , Trombina , Regulación Alostérica , Sitios de Unión , Oro , Ligandos
8.
Cancer Lett, v. 491, p. 108-120, out. 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3148

RESUMEN

Breast cancer is the most common malignant tumor among women worldwide, and triple-negative breast cancer is the most aggressive type of breast cancer, which does not respond to hormonal therapies. The protease inhibitor, EcTI, extracted from seeds of Enterolobium contortisiliquum, acts on the main signaling pathways of the MDA-MB-231 triple-negative breast cancer cells. This inhibitor, when bound to collagen I of the extracellular matrix, triggers a series of pathways capable of decreasing the viability, adhesion, migration, and invasion of these cells. This inhibitor can interfere in the cell cycle process through the main signaling pathways such as the adhesion, Integrin/FAK/SRC, Akt, ERK, and the cell death pathway BAX and BCL-2. It also acts by reducing the main inflammatory cytokines such as TGF-α, IL-6, IL-8, and MCP-1, besides NFκB, a transcription factor, responsible for the aggressive and metastatic characteristics of this type of tumor. Thus, the inhibitor was able to reduce the main processes of carcinogenesis of this type of cancer.

9.
Platelets ; 30(3): 305-313, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29442535

RESUMEN

The purpose of antithrombotic therapy is the prevention of thrombus formation and/or its extension with a minimum risk of bleeding. The inhibition of a variety of proteolytic processes, particularly those of the coagulation cascade, has been reported as a property of plant protease inhibitors. The role of trypsin inhibitors (TIs) from Delonix regia (Dr) and Acacia schweinfurthii (As), members of the Kunitz family of protease inhibitors, was investigated on blood coagulation, platelet aggregation, and thrombus formation. Different from Acacia schweinfurthii trypsin inhibitor (AsTI), Delonix regia trypsin inhibitor (DrTI) is a potent inhibitor of FXIa with a Kiapp of 1.3 × 10-9 M. In vitro, both inhibitors at 100 µg corresponding to the concentrations of 21 µM and 15.4 µM of DrTI and AsTI, respectively, increased approximately 2.0 times the activated partial thromboplastin time (aPTT) in human plasma compared to the control, likely due to the inhibition of human plasma kallikrein (huPK) or activated factor XI (FXIa), in the case of DrTI. Investigating in vivo models of arterial thrombus formation and bleeding time, DrTI and AsTI, 1.3 µM and 0.96 µM, respectively, prolonged approximately 50% the time for total carotid artery occlusion in mice compared to the control. In contrast to heparin, the bleeding time in mice treated with the two inhibitors did not differ from that of the control group. DrTI and AsTI inhibited 49.3% and 63.8%, respectively, ex vivo murine platelet aggregation induced by adenosine diphosphate (ADP), indicating that these protein inhibitors prevent arterial thrombus formation possibly by interfering with the plasma kallikrein (PK) proteolytic action on the intrinsic coagulation pathway and its ability to enhance the platelet aggregation activity on the intravascular compartment leading to the improvement of a thrombus.


Asunto(s)
Plantas/química , Calicreína Plasmática/metabolismo , Inhibidores de Proteasas/uso terapéutico , Trombosis/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Inhibidores de Proteasas/farmacología
10.
Nanoscale ; 10(7): 3235-3244, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29383361

RESUMEN

Synthetic ultrasmall nanoparticles (NPs) can be designed to interact with biologically active proteins in a controlled manner. However, the rational design of NPs requires a clear understanding of their interactions with proteins and the precise molecular mechanisms that lead to association/dissociation in biological media. Although much effort has been devoted to the study of the kinetics mechanism of protein corona formation on large NPs, the nature of NP-protein interactions in the ultrasmall regime is radically different and poorly understood. Using a combination of experimental and computational approaches, we studied the interactions of a model protein, CrataBL, with ultrasmall gold NPs passivated with p-mercaptobenzoic acid (AuMBA) and glutathione (AuGSH). We have identified this system as an ideal in vitro platform to understand the dependence of binding affinity and kinetics on NP surface chemistry. We found that the structural and chemical complexity of the passivating NP layer leads to quite different association kinetics, from slow and reaction-limited (AuGSH) to fast and diffusion-limited (AuMBA). We also found that the otherwise weak and slow AuGSH-protein interactions measured in buffer solution are enhanced in macromolecular crowded solutions. These findings advance our mechanistic understanding of biomimetic NP-protein interactions in the ultrasmall regime and have implications for the design and use of NPs in the crowded conditions common to all biological media.


Asunto(s)
Oro , Nanopartículas del Metal/química , Corona de Proteínas/química , Cinética , Unión Proteica
11.
Biochimie ; 135: 72-81, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28115185

RESUMEN

Human plasma kallikrein (huPK) potentiates platelet responses to subthreshold doses of ADP, although huPK itself, does not induce platelet aggregation. In the present investigation, we observe that huPK pretreatment of platelets potentiates ADP-induced platelet activation by prior proteolysis of the G-protein-coupled receptor PAR-1. The potentiation of ADP-induced platelet activation by huPK is mediated by the integrin αIIbß3 through interactions with the KGD/KGE sequence motif in huPK. Integrin αIIbß3 is a cofactor for huPK binding to platelets to support PAR-1 hydrolysis that contributes to activation of the ADP signaling pathway. This activation pathway leads to phosphorylation of Src, AktS473, ERK1/2, and p38 MAPK, and to Ca2+ release. The effect of huPK is blocked by specific antagonists of PAR-1 (SCH 19197) and αIIbß3 (abciximab) and by synthetic peptides comprising the KGD and KGE sequence motifs of huPK. Further, recombinant plasma kallikrein inhibitor, rBbKI, also blocks this entire mechanism. These results suggest a new function for huPK. Formation of plasma kallikrein lowers the threshold for ADP-induced platelet activation. The present observations are consistent with the notion that plasma kallikrein promotes vascular disease and thrombosis in the intravascular compartment and its inhibition may ameliorate cardiovascular disease and thrombosis.


Asunto(s)
Adenosina Difosfato/farmacología , Calicreína Plasmática/farmacología , Agregación Plaquetaria/efectos de los fármacos , Humanos , Fosforilación/efectos de los fármacos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Receptor PAR-1/metabolismo , Transducción de Señal/efectos de los fármacos
12.
PLoS One ; 11(7): e0158578, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27391384

RESUMEN

Cell culture is considered the standard media used in research to emulate the in vivo cell environment. Crucial in vivo experiments cannot be conducted in humans and depend on in vitro methodologies such as cell culture systems. However, some procedures involving the quality control of cells in culture have been gradually neglected by failing to acknowledge that primary cells and cell lines change over time in culture. Thus, we report methods based on our experience for monitoring primary cell culture of human myometrial cells derived from uterine leiomyoma. We standardized the best procedure of tissue dissociation required for the study of multiple genetic marker systems that include species-specific antigens, expression of myofibroblast or myoblast markers, growth curve, serum deprivation, starvation by cell cycle synchronization, culture on collagen coated plates, and 17 ß-estradiol (E2) and progesterone (P4) effects. The results showed that primary myometrial cells from patients with uterine leiomyoma displayed myoblast phenotypes before and after in vitro cultivation, and leiomyoma cells differentiated into mature myocyte cells under the appropriate differentiation-inducing conditions (serum deprivation). These cells grew well on collagen coated plates and responded to E2 and P4, which may drive myometrial and leiomyoma cells to proliferate and adhere into a focal adhesion complex involvement in a paracrine manner. The establishment of these techniques as routine procedures will improve the understanding of the myometrial physiology and pathogenesis of myometrium-derived diseases such as leiomyoma. Mimicking the in vivo environment of fibrotic conditions can prevent false results and enhance results that are based on cell culture integrity.


Asunto(s)
Leiomioma/patología , Miometrio/citología , Neoplasias Uterinas/patología , Adulto , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Estradiol/farmacología , Femenino , Citometría de Flujo , Humanos , Leiomioma/metabolismo , Masculino , Microscopía Fluorescente , Mycoplasma/citología , Mycoplasma/metabolismo , Miometrio/metabolismo , Fosfoproteínas/metabolismo , Progesterona/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas , Neoplasias Uterinas/metabolismo
13.
BMC Cancer ; 16: 173, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26931461

RESUMEN

BACKGROUND: Breast cancer comprises clinically and molecularly distinct tumor subgroups that differ in cell histology and biology and show divergent clinical phenotypes that impede phase III trials, such as those utilizing cathepsin K inhibitors. Here we correlate the epithelial-mesenchymal-like transition breast cancer cells and cathepsin K secretion with activation and aggregation of platelets. Cathepsin K is up-regulated in cancer cells that proteolyze extracellular matrix and contributes to invasiveness. Although proteolytically activated receptors (PARs) are activated by proteases, the direct interaction of cysteine cathepsins with PARs is poorly understood. In human platelets, PAR-1 and -4 are highly expressed, but PAR-3 shows low expression and unclear functions. METHODS: Platelet aggregation was monitored by measuring changes in turbidity. Platelets were immunoblotted with anti-phospho and total p38, Src-Tyr-416, FAK-Tyr-397, and TGFß monoclonal antibody. Activation was measured in a flow cytometer and calcium mobilization in a confocal microscope. Mammary epithelial cells were prepared from the primary breast cancer samples of 15 women with Luminal-B subtype to produce primary cells. RESULTS: We demonstrate that platelets are aggregated by cathepsin K in a dose-dependent manner, but not by other cysteine cathepsins. PARs-3 and -4 were confirmed as the cathepsin K target by immunodetection and specific antagonists using a fibroblast cell line derived from PARs deficient mice. Moreover, through co-culture experiments, we show that platelets activated by cathepsin K mediated the up-regulation of SHH, PTHrP, OPN, and TGFß in epithelial-mesenchymal-like cells from patients with Luminal B breast cancer. CONCLUSIONS: Cathepsin K induces platelet dysfunction and affects signaling in breast cancer cells.


Asunto(s)
Plaquetas/metabolismo , Neoplasias de la Mama/metabolismo , Catepsina K/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Animales , Plaquetas/efectos de los fármacos , Neoplasias de la Mama/sangre , Neoplasias de la Mama/patología , Calcio/metabolismo , Catepsina K/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Femenino , Proteínas Hedgehog/metabolismo , Humanos , Hidrólisis , Ligandos , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , Fosforilación , Activación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Proteolisis , Receptores de Trombina/antagonistas & inhibidores , Trombina/metabolismo , Trombina/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Familia-src Quinasas/metabolismo
14.
Nat Prod Res ; 30(23): 2712-2715, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30919696

RESUMEN

Araucaria angustifolia seeds are characterised by a relatively high content of starch and protein. This study aimed to verify the presence of α-amylase inhibitors in the seeds and to characterise a trypsin inhibitor found in the embryo tissues. Inhibitor purification was carried out by the saline extraction of proteins, acetone precipitation and affinity chromatography. Two protein bands of molecular weight estimated by SDS-PAGE at about 35 kDa were further examined by high-performance liquid chromatography coupled to a mass spectrometer and were shown to be 36.955 Da (AaTI-1) and 35.450 Da (AaTI-2). The sequence of the N-terminal region shows that AaTI-1 and AaTI-2 are structurally similar to plant inhibitors of the serpin family. A mixture of AaTI-1 and AaTI-2, identified as AaTI, shows selectivity for the inhibition of trypsin (Kiapp 85 nM) and plasmin (Kiapp 7.0 µM), but it does not interfere with the chymotrypsin, human plasma kallikrein, porcine kallikrein or other coagulation enzymes activity.

15.
J Agric Food Chem ; 63(48): 10431-6, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26568149

RESUMEN

Callosobruchus maculatus is an important predator of cowpeas. Due to infestation during storage, this insect affects the quality of seed and crop yield. This study aimed to investigate the effects of CrataBL, a multifunction protein isolated from Crataeva tapia bark, on C. maculatus larva development. The protein, which is stable even in extreme pH conditions, showed toxic activity, reducing the larval mass 45 and 70% at concentrations of 0.25 and 1.0% (w/w), respectively. Acting as an inhibitor, CrataBL decreased by 39% the activity of cysteine proteinases from larval gut. Conversely, the activity of serine proteinases was increased about 8-fold. The toxic properties of CrataBL may also be attributed to its capacity of binding to glycoproteins or glycosaminoglycans. Such binding interferes with larval metabolism, because CrataBL-FITC was found in the fat body, Malpighian tubules, and feces of larvae. These results demonstrate the potential of this protein for controlling larva development.


Asunto(s)
Capparaceae/química , Escarabajos/efectos de los fármacos , Larva/crecimiento & desarrollo , Lectinas/farmacología , Corteza de la Planta/química , Extractos Vegetales/farmacología , Animales , Escarabajos/enzimología , Escarabajos/crecimiento & desarrollo , Proteasas de Cisteína/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Proteínas de Insectos/metabolismo , Larva/efectos de los fármacos , Larva/enzimología
16.
Biochim Biophys Acta ; 1840(7): 2262-71, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24641823

RESUMEN

BACKGROUND: Plant lectins have attracted great interest in cancer studies due to their antitumor activities. These proteins or glycoproteins specifically and reversibly bind to different types of carbohydrates or glycoproteins. Breast cancer, which presents altered glycosylation of cell surface glycoproteins, is one of the most frequent malignant diseases in women. In this work, we describe the effect of the lectin Bauhinia forficata lectin (BfL), which was purified from B. forficata Link subsp. forficata seeds, on the MCF7 human breast cancer cellular line, investigating the mechanisms involved in its antiproliferative activity. METHODS: MCF7 cells were treated with BfL. Viability and adhesion alterations were evaluated using flow cytometry and western blotting. RESULTS: BfL inhibited the viability of the MCF7 cell line but was ineffective on MDA-MB-231 and MCF 10A cells. It inhibits MCF7 adhesion on laminin, collagen I and fibronectin, decreases α1, α6 and ß1 integrin subunit expression, and increases α5 subunit expression. BfL triggers necrosis and secondary necrosis, with caspase-9 inhibition. It also causes deoxyribonucleic acid (DNA) fragmentation, which leads to cell cycle arrest in the G2/M phase and a decrease in the expression of the regulatory proteins pRb and p21. CONCLUSION: BfL shows selective cytotoxic effect and adhesion inhibition on MCF7 breast cancer cells. GENERAL SIGNIFICANCE: Cell death induction and inhibition of cell adhesion may contribute to understanding the action of lectins in breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Adhesión Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Lectinas/farmacología , Bauhinia/química , Neoplasias de la Mama/patología , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Integrinas/metabolismo , Lectinas/química , Células MCF-7
17.
Thromb Res ; 133(5): 945-51, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24642009

RESUMEN

The Bauhinia bauhinioides Kallikrein Inhibitor (BbKI) is a Kunitz-type serine peptidase inhibitor of plant origin that has been shown to impair the viability of some tumor cells and to feature a potent inhibitory activity against human and rat plasma kallikrein (Kiapp 2.4 nmol/L and 5.2 nmol/L, respectively). This inhibitory activity is possibly responsible for an effect on hemostasis by prolonging activated partial thromboplastin time (aPTT). Because the association between cancer and thrombosis is well established, we evaluated the possible antithrombotic activity of this protein in venous and arterial thrombosis models. Vein thrombosis was studied in the vena cava ligature model in Wistar rats, and arterial thrombosis in the photochemical induced endothelium lesion model in the carotid artery of C57 black 6 mice. BbKI at a concentration of 2.0 mg/kg reduced the venous thrombus weight by 65% in treated rats in comparison to rats in the control group. The inhibitor prolonged the time for total artery occlusion in the carotid artery model mice indicating that this potent plasma kallikrein inhibitor prevented thrombosis.


Asunto(s)
Fibrinolíticos/farmacología , Proteínas de Plantas/farmacología , Trombosis/tratamiento farmacológico , Animales , Bauhinia , Coagulación Sanguínea/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Distribución Aleatoria , Ratas , Ratas Wistar , Trombina/antagonistas & inhibidores , Trombina/farmacología , Trombosis/sangre
18.
Biol Chem ; 393(9): 943-57, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22944694

RESUMEN

BbKI is a kallikrein inhibitor with a reactive site sequence similar to that of kinins, the vasoactive peptides inserted in kininogen moieties. This structural similarity probably contributes to the strong interaction with plasma kallikrein, the enzyme that releases, from high-molecular weight kininogen (HMWK), the proinflammatory peptide bradykinin, which acts on B(2) receptors (B(2)R). BbKI was examined on smooth muscle contraction and Ca(2+) mobilization, in which the kallikrein-kinin system is involved. Contrary to expectations, BbKI (1.8 µm) increased [Ca(2+)](c) and contraction, as observed with BK (2.0 µm). Not blocked by B(1) receptors (B(1)R), the BbKI agonistic effect was blocked by the B(2)R antagonist, HOE-140 (6 µm), and the involvement of B(2)R was confirmed in B(2)R-knockout mice intestine. The same tissue response was obtained using a synthetic peptide derived from the BbKI reactive site structure, more resistant than BK to angiotensin I-converting enzyme (ACE) hydrolysis. Depending on the concentration, BbKI has a dual effect. At a low concentration, BbKI acts as a potent kallikrein inhibitor; however, due to the similarity to BK, in high concentrations, BbKI greatly increases Ca(2+) release from internal storages, as a consequence of its interaction with B(2)R. Therefore, the antagonistic and agonistic effects of BbKI may be considered in conditions of B(2)R involvement.


Asunto(s)
Bradiquinina/metabolismo , Calcio/metabolismo , Intestinos/fisiología , Contracción Muscular/fisiología , Músculo Liso/fisiología , Péptidos/química , Péptidos/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/farmacología , Animales , Bauhinia/química , Sitios de Unión , Bradiquinina/análogos & derivados , Bradiquinina/farmacología , Antagonistas del Receptor de Bradiquinina B2 , Citosol/metabolismo , Interacciones Farmacológicas , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Calicreínas/antagonistas & inhibidores , Masculino , Ratones , Ratones Noqueados , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Ratas Wistar , Receptor de Bradiquinina B1/metabolismo , Receptor de Bradiquinina B2/metabolismo , Verapamilo/farmacología
19.
J Biol Chem ; 287(1): 170-182, 2012 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22039045

RESUMEN

Tumor cell invasion is vital for cancer progression and metastasis. Adhesion, migration, and degradation of the extracellular matrix are important events involved in the establishment of cancer cells at a new site, and therefore molecular targets are sought to inhibit such processes. The effect of a plant proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on the adhesion, migration, and invasion of gastric cancer cells was the focus of this study. EcTI showed no effect on the proliferation of gastric cancer cells or fibroblasts but inhibited the adhesion, migration, and cell invasion of gastric cancer cells; however, EcTI had no effect upon the adhesion of fibroblasts. EcTI was shown to decrease the expression and disrupt the cellular organization of molecules involved in the formation and maturation of invadopodia, such as integrin ß1, cortactin, neuronal Wiskott-Aldrich syndrome protein, membrane type 1 metalloprotease, and metalloproteinase-2. Moreover, gastric cancer cells treated with EcTI presented a significant decrease in intracellular phosphorylated Src and focal adhesion kinase, integrin-dependent cell signaling components. Together, these results indicate that EcTI inhibits the invasion of gastric cancer cells through alterations in integrin-dependent cell signaling pathways.


Asunto(s)
Antineoplásicos/farmacología , Fabaceae/química , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Transducción de Señal/efectos de los fármacos , Inhibidores de Tripsina/farmacología , Antineoplásicos/aislamiento & purificación , Adhesión Celular/efectos de los fármacos , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cortactina/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 14 de la Matriz/metabolismo , Invasividad Neoplásica , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas pp60(c-src)/antagonistas & inhibidores , Neoplasias Gástricas/patología , Inhibidores de Tripsina/aislamiento & purificación , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo
20.
Biol Chem ; 392(4): 327-36, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21781023

RESUMEN

Supplementary to the efficient inhibition of trypsin, chymotrypsin, plasma kallikrein, and plasmin already described by the EcTI inhibitor from Enterolobium contortisiliquum, it also blocks human neutrophil elastase (K(iapp)=4.3 nM) and prevents phorbol ester (PMA)-stimulated activation of matrix metalloproteinase (MMP)-2 probably via interference with membrane-type 1 (MT1)-MMP. Moreover, plasminogen-induced activation of proMMP-9 and processing of active MMP-2 was also inhibited. Furthermore, the effect of EcTI on the human cancer cell lines HCT116 and HT29 (colorectal), SkBr-3 and MCF-7 (breast), K562 and THP-1 (leukemia), as well as on human primary fibroblasts and human mesenchymal stem cells (hMSCs) was studied. EcTI inhibited in a concentration range of 1.0-2.5 µM rather specifically tumor cell viability without targeting primary fibroblasts and hMSCs. Taken together, our data indicate that the polyspecific proteinase inhibitor EcTI prevents proMMP activation and is cytotoxic against tumor cells without affecting normal tissue remodeling fibroblasts or regenerative hMSCs being an important tool in the studies of tumor cell development and dissemination.


Asunto(s)
Fabaceae/química , Proteínas de Plantas/farmacología , Inhibidores de Proteasas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Fibroblastos/efectos de los fármacos , Humanos , Leucemia/tratamiento farmacológico , Elastasa de Leucocito/antagonistas & inhibidores , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Plasminógeno/farmacología , Acetato de Tetradecanoilforbol/farmacología , Inhibidores de Tripsina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA