Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Sci Rep ; 10(1): 2696, 2020 02 14.
Article En | MEDLINE | ID: mdl-32060388

Cutaneous secretions of amphibians have bioactive compounds, such as peptides, with potential for biotechnological applications. Therefore, this study aimed to determine the primary structure and investigate peptides obtained from the cutaneous secretions of the amphibian, Leptodactylus vastus, as a source of bioactive molecules. The peptides obtained possessed the amino acid sequences, GVVDILKGAAKDLAGH and GVVDILKGAAKDLAGHLASKV, with monoisotopic masses of [M + H]± = 1563.8 Da and [M + H]± = 2062.4 Da, respectively. The molecules were characterized as peptides of the class of ocellatins and were named as Ocellatin-K1(1-16) and Ocellatin-K1(1-21). Functional analysis revealed that Ocellatin-K1(1-16) and Ocellatin-K1(1-21) showed weak antibacterial activity. However, treatment of mice with these ocellatins reduced the nitrite and malondialdehyde content. Moreover, superoxide dismutase enzymatic activity and glutathione concentration were increased in the hippocampus of mice. In addition, Ocellatin-K1(1-16) and Ocellatin-K1(1-21) were effective in impairing lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) formation and NF-kB activation in living microglia. We incubated hippocampal neurons with microglial conditioned media treated with LPS and LPS in the presence of Ocellatin-K1(1-16) and Ocellatin-K1(1-21) and observed that both peptides reduced the oxidative stress in hippocampal neurons. Furthermore, these ocellatins demonstrated low cytotoxicity towards erythrocytes. These functional properties suggest possible to neuromodulatory therapeutic applications.


Antimicrobial Cationic Peptides/pharmacology , Anura/metabolism , Hippocampus/drug effects , Infections/drug therapy , Neurons/drug effects , Amino Acid Sequence/genetics , Animals , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , Hippocampus/metabolism , Infections/chemically induced , Infections/genetics , Infections/microbiology , Lipopolysaccharides/toxicity , Mice , Microglia/drug effects , NF-kappa B/genetics , Neurons/metabolism , Nitrites/antagonists & inhibitors , Nitrites/metabolism , Reactive Oxygen Species/metabolism
2.
Med Chem ; 13(6): 592-603, 2017.
Article En | MEDLINE | ID: mdl-28266277

BACKGROUND: Bergenin, a compound derived from gallic acid, is a secondary metabolite of the plant Peltophorum dubium (Spreng.) Taub. OBJECTIVE: In this study, we aimed to characterize the ability of bergenin to eliminate the radicals in non-biological systems. METHODS: We evaluated bergenin's ability to protect erythrocytes from oxidative damage in a biological system. We have elucidated bergenin structure using nuclear magnetic resonance, X-ray diffraction, Fourier transform infrared spectroscopy, and differential scanning calorimetry. We then evaluated its antioxidant capacity in vitro against DPPH•, ABTS•+, hydroxyl radicals, and nitric oxide, and determined its ability to transfer electrons owing to its reduction potential and ability to chelate iron. We also evaluated its protective capacity against oxidative damage produced by AAPH in erythrocytes, its hemolytic properties, its ability to inhibit hemolysis, and its ability to maintain intracellular reduced glutathione homeostasis. RESULTS: Bergenin concentrations between 0.1 and 3mM significantly (p < 0.05) and dose dependently decreased formation of ABTS•+, DPPH•, nitrite ions, OH•, reduced formation ferricyanide, ferrozine-Fe2+complex, inhibited AAPH-induced oxidative hemolysis of erythrocytes, raised GSH levels in the presence of AAPH, inhibited AAPH-induced lipid peroxidation in erythrocytes. CONCLUSION: Bergenin may represent a novel alternative antioxidant, with potential applications in various industries, including drugs, cosmetics, and foods.


Antioxidants/isolation & purification , Antioxidants/pharmacology , Benzopyrans/isolation & purification , Benzopyrans/pharmacology , Erythrocytes/drug effects , Fabaceae/chemistry , Animals , Antioxidants/chemistry , Benzopyrans/chemistry , Benzothiazoles/chemistry , Biphenyl Compounds/chemistry , Electron Transport/drug effects , Erythrocytes/metabolism , Female , Glutathione/metabolism , Hemolysis/drug effects , Homeostasis/drug effects , Hydroxyl Radical/chemistry , Intracellular Space/drug effects , Intracellular Space/metabolism , Iron/chemistry , Lipid Peroxidation/drug effects , Models, Molecular , Molecular Conformation , Nitrites/chemistry , Picrates/chemistry , Rats , Rats, Wistar , Sulfonic Acids/chemistry
...