Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 56(34): 10161-10164, 2017 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-28508441

RESUMEN

Multimeric oxo-hydroxo Al clusters function as models for common mineral structures and reactions. Cluster research, however, is often slowed by a lack of methods to prepare clusters in pure form and in large amounts. Herein, we report a facile synthesis of the little known cluster Al8 (OH)14 (H2 O)18 (SO4 )5 (Al8 ) through a simple dissolution method. We confirm its structure by single-crystal X-ray diffraction and show by 27 Al NMR spectroscopy, electrospray-ionization mass spectrometry, and small- and wide-angle X-ray scattering that it also exists in solution. We speculate that Al8 may form in natural water systems through the dissolution of aluminum-containing minerals in acidic sulfate solutions, such as those that could result from acid rain or mine drainage. Additionally, the dissolution method produces a discrete Al cluster on a scale suitable for studies and applications in materials science.

2.
Inorg Chem ; 56(9): 5478-5487, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28394584

RESUMEN

Herein, we report a new salt of a pyrophosphate-functionalized uranyl peroxide nanocluster {U24Pp12} (1) exhibiting Oh molecular symmetry both in the solid and solution. Study of the system yielding 1 across a wide range of pH by single-crystal X-ray diffraction, small-angle X-ray scattering, and a combination of traditional 31P and diffusion-ordered spectroscopy (DOSY) NMR affords unprecedented insight into the amphoteric chemistry of this uranyl peroxide system. Key results include formation of a rare binary {U24}·{U24Pp12} (3) system observed under alkaline conditions, and evidence of acid-promoted decomposition of {U24Pp12} (1) followed by spatial rearrangement and condensation of {U4} building blocks into the {U32Pp16} (2) cluster. Furthermore, 31P DOSY NMR measurements performed on saturated solutions containing crystalline {U32Pp16} show only trace amounts (∼2% relative abundance) of the intact form of this cluster, suggesting a complex interconversion of {U24Pp12}, {U32Pp16}, and {U4Pp4-x} ions.

3.
Chemistry ; 22(52): 18682-18685, 2016 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-27785845

RESUMEN

The solution chemistry of aluminum has long interested scientists due to its relevance to materials chemistry and geochemistry. The dynamic behavior of large aluminum-oxo-hydroxo clusters, specifically [Al13 O4 (OH)24 (H2 O)12 ]7+ (Al13 ), is the focus of this paper. 27 Al NMR, 1 H NMR, and 1 H DOSY techniques were used to follow the isomerization of the ϵ-Al13 in the presence of glycine and Ca2+ at 90 °C. Although the conversion of ϵ-Al13 to new clusters and/or Baker-Figgis-Keggin isomers has been studied previously, new 1 H NMR and 1 H DOSY analyses provided information about the role of glycine, the ligated intermediates, and the mechanism of isomerization. New 1 H NMR data suggest that glycine plays a critical role in the isomerization. Surprisingly, glycine does not bind to Al30 clusters, which were previously proposed as an intermediate in the isomerization. Additionally, a highly symmetric tetrahedral signal (δ=72 ppm) appeared during the isomerization process, which evidence suggests corresponds to the long-sought α-Al13 isomer in solution.

4.
Chem Sci ; 6(7): 4071-4085, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29218173

RESUMEN

NMR spectroscopy is the go-to technique for determining the solution structures of organic, organometallic, and even macromolecular species. However, structure determination of nanoscale aqueous inorganic clusters by NMR spectroscopy remains an unexplored territory. The few hydroxo-bridged inorganic species well characterized by 1H Nuclear Magnetic Resonance spectroscopy (1H-NMR) do not provide enough information for signal assignment and prediction of new samples. 1H-NMR and quantum mechanical (QM) computations were used to characterize the NMR spectra of the entire array of inorganic flat-Ga13-x In x (0 ≤ x ≤ 6) nanoscale clusters in solution. A brief review of the known signals for µ2-OH and µ3-OH bridges gives expected ranges for certain types of protons, but does not give enough information for exact peak assignment. Integration values and NOESY data were used to assign the peaks of several cluster species with simple 1H-NMR spectra. Computations agree with these hydroxide signal assignments and allow for assignment of the complex spectra arising from the remaining cluster species. This work shows that 1H-NMR spectroscopy provides a variety of information about the solution behavior of inorganic species previously thought to be inaccessible by NMR due to fast ligand and/or proton exchange in wet solvents.

5.
Chemphyschem ; 14(12): 2655-61, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-23616422

RESUMEN

The challenge of defining a length on the nanoscale is non-trivial. For a well-defined inorganic nanoscale species, a size measurement can describe a number of different dimensions (core, shell, solvation sphere). Often size is reported out of context or even inadvertently misrepresented. Since many of the techniques used to measure size depend on significant and sometimes destructive sample preparation, an additional challenge is defining "what size means" for a nanoscale species in solution. In this Concept, the distinction is made between complementary techniques that can be used together to unveil more information about the material in question, and corroborative techniques, which are used to make multiple measurements of the same property. Additionally, corroborative techniques can be used to measure the same property in and out-of solution so as to reveal details about solution behaviour. We highlight various approaches to this characterization challenge in the context of three case studies that demonstrate the use of both complementary and corroborative techniques to elucidate the various functional dimensions of different types of inorganic nanoscale species in solution.

6.
Angew Chem Int Ed Engl ; 51(44): 10992-6, 2012 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-23055451

RESUMEN

A solved structure: The hydrated Ga(13) cluster, [Ga(13)(µ(3)-OH)(6)(µ-OH)(18)(H(2)O)(24)](NO(3))(15)], persists as a discrete nanoscale structure in an aqueous polar solvent at millimolar concentration. SAXS data confirm the presence of Ga(13) in dimethyl sulfoxide (DMSO). In aqueous [D(6)]DMSO (1)H NMR signals for the hydroxo and aquo ligands of Ga(13) were detected, thus showing a cluster with a hydrodynamic radius of (11.2±0.8) Š(see picture).


Asunto(s)
Galio/química , Nanoestructuras/química , Difusión , Hidrodinámica , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Protones , Dispersión del Ángulo Pequeño , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...