Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 931: 172548, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38643882

RESUMEN

The Brisbane River estuary is an anthropogenically-impacted waterway in southeast Queensland, Australia. The estuary is over 80 km long and flows through an urbanised region. It receives over 500 t per year of total nitrogen (N) from direct point-source discharges in addition to sporadic flood loads of N from an agriculturally impacted upper catchment. Comprehensive water quality monitoring data for the estuary have been collected from at least 2001. This monitoring data includes ambient nutrient concentrations in the estuary, nutrient concentration and volume of the catchment inflows, and nutrient concentration and volume of point source discharges. This long-term data from a range of sources was used to determine temporal and spatial variations in concentrations, forms, stores and loads of N along the estuary for the period 2001 to 2022. Results showed that, during low-flow periods, the store of N in the mid-upper estuary (33-81 km upstream) is significantly determined by point-source discharges to this reach, and therefore the store of N can be modelled. Model parameters are the daily point source loads, a point source load decay factor, and a background constant store. In the lower estuary (0-33 km upstream) N store can be accurately determined based on dilution with seawater, with point sources not having significant influence on total N in the reach. Total N from large flood events was found to largely pass through the estuary without detectable removal processes, delivering catchment derived N directly to coastal waters. This work informs potential application of nutrient offsets in the estuary, guiding where and when offset options will be effective to mitigate the water quality impacts of point-source nutrients.

2.
Sci Total Environ ; 892: 164731, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37290645

RESUMEN

Excess fine sediment delivery is a major contributor to the declining health of the Great Barrier Reef and identifying the dominant source areas of fine sediment has been critical to prioritising erosion remediation programs. The Bowen River catchment within the Burdekin Basin has been recognised as a major contributor and hence received considerable research investment over the last two decades. This study adopts a novel approach to integrate three independently derived sediment budgets produced from a catchment scale sediment budget model (Dynamic SedNet), targeted tributary water quality monitoring and geochemical sediment source tracing to refine and map the sediment source zones within the Bowen catchment. A four year study of water quality monitoring combined with modelled discharge estimates and geochemical source tracing both identified that the Little Bowen River and Rosella Creek were the largest sources of sediment in the Bowen River catchment. Both data sets contradicted initial synoptic sediment budget model predictions due to inadequate representation of hillslope and gully erosion. Recent improvements in model inputs have resulted in predictions that are consistent with the field data and are of finer resolution within the identified source areas. Priorities for further investigation of erosion processes are also revealed. Examining the benefits and limitations of each method indicates that these are complimentary methods which can effectively be used as multiple lines of evidence. An integrated dataset such as this provides a higher level of certainty in the prediction of fine sediment sources than a single line of evidence dataset or model. The use of high quality, integrated datasets to inform catchment management prioritisation will provide greater confidence for decision makers when investing in catchment management.


Asunto(s)
Sedimentos Geológicos , Ríos , Calidad del Agua , Monitoreo del Ambiente
3.
J Paleolimnol ; : 1-17, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37361252

RESUMEN

210Pb and 137Cs dating of bulk sediments obtained from the alpine Blue Lake, located in the Snowy Mountains of southeastern Australia, was applied here to date recent lacustrine sediments. In addition, the presence of Pinus pollen (a taxon introduced in Australia about 150 years ago) down to a sediment depth of 56 cm in the core is used to obtain a chronology for the upper part of the core. Accelerated Mass Spectrometry radiocarbon dates obtained from organic muds from the same core do not agree with the chronology constructed using the three other dating techniques. In addition, optically stimulated luminescence (OSL) dating of single quartz grains, from sediment-core samples collected from the same lake, was applied to date recent lacustrine sediments. The optical age of 185 ± 20 years for a sample at 60-62 cm depth, and 470 ± 50 years at 116-118 cm depth are well over 1000 years younger than the ages inferred from radiocarbon dates. We therefore infer that the 'old' radiocarbon ages result from carbon stored for considerable time within the catchment prior to its transport and deposition on the lake floor. As plant decomposition occurs at much slower rates in high altitude environments, these results bring into question the veracity of previously published radiocarbon dates from Blue Lake and alpine lake sediments in general. The deposition ages inferred from the 210Pb-137Cs and OSL dating, and the first appearance of Pinus pollen, indicate that for the 100-year period after European settlement (from the mid 1800s to early 1900s) the sediment-accumulation rate increased by a factor of about 2, from 0.19 ± 0.01 cm yr-1 to 0.35 ± 0.02 cm yr-1. In the 1900s the accumulation rate increased further to 0.60 cm yr-1. The accumulation rate was particularly rapid in the 20-year period from 1940-1960, reaching a rate 18 times higher than the pre-European rate in the mid-1950s. The increase in sedimentation rate is attributed to changes in land use resulting from European activities in the lake catchment, primarily through sheep and cattle grazing in the Blue Lake catchment.

4.
Nat Commun ; 11(1): 2250, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32418985

RESUMEN

Explanations for the Upper Pleistocene extinction of megafauna from Sahul (Australia and New Guinea) remain unresolved. Extinction hypotheses have advanced climate or human-driven scenarios, in spite of over three quarters of Sahul lacking reliable biogeographic or chronologic data. Here we present new megafauna from north-eastern Australia that suffered extinction sometime after 40,100 (±1700) years ago. Megafauna fossils preserved alongside leaves, seeds, pollen and insects, indicate a sclerophyllous forest with heathy understorey that was home to aquatic and terrestrial carnivorous reptiles and megaherbivores, including the world's largest kangaroo. Megafauna species diversity is greater compared to southern sites of similar age, which is contrary to expectations if extinctions followed proposed migration routes for people across Sahul. Our results do not support rapid or synchronous human-mediated continental-wide extinction, or the proposed timing of peak extinction events. Instead, megafauna extinctions coincide with regionally staggered spatio-temporal deterioration in hydroclimate coupled with sustained environmental change.


Asunto(s)
Cambio Climático/historia , Extinción Biológica , Fósiles , Animales , Australia , Carnivoría , Clasificación , Clima , Dromaiidae , Ecosistema , Bosques , Historia Antigua , Humanos , Macropodidae , Marsupiales , Nueva Guinea , Paleontología , Datación Radiométrica , Reptiles , Uranio
5.
Sci Total Environ ; 707: 135904, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-31865069

RESUMEN

It is a substantial challenge to quantify the benefits which ecosystems provide to water supply at scales large enough to support policy making. This study tested the hypothesis that vegetation could reduce riverbank erosion, and therefore contribute to reducing turbidity and the cost of water supply, during a large magnitude flood along a 62 km riparian corridor where land cover differed substantially from natural conditions. Several lines of evidence were used to establish the benefits that vegetation provided to reducing eleven riverbank erosion processes over 1688 observations. The data and analyses confirmed that vegetation significantly reduced the magnitude of the riverbank erosion process which was the largest contributor to total erosion volume. For this process, a 1% increase in canopy cover of trees higher than five metres reduced erosion magnitude by between 2 and 3%. Results also indicate that riverbank erosion was likely to be affected by direct changes to the riparian corridor which influenced longitudinal coarse sediment connectivity. When comparing the impact of these direct changes on a relative basis, sand and gravel extraction was likely to be the dominant contributor to changed erosion rates. The locations where erosion rates had substantially increased were of limited spatial extent and in general substantial change in river form had not occurred. This suggests that the trajectory of river condition and increasing turbidity are potentially reversible if the drivers of river degradation are addressed through an ecosystem restoration policy.


Asunto(s)
Ecosistema , Agua Potable , Inundaciones , Ríos , Árboles
6.
Sci Total Environ ; 654: 583-592, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30447597

RESUMEN

Erosion of soil from catchments during floods can deliver large quantities of sediment to the coastal zone. The transformations and processes of nutrient release from catchment soils during flooding are not well understood. To test the hypothesis that catchment soils supply nutrients to the coastal zone, we examined nutrient release and transformation following wetting of soils formed from three distinct rock types (basalt, granite and sandstone) with fresh and marine water. The soil samples were collected from eroding areas of a subtropical river catchment. We simulated runoff, transport and deposition by tumbling the fine fraction of the soils in freshwater for three days and settling in seawater for four weeks. We also collected and incubated cores from an adjacent coastal bay and added a layer of catchment soil to simulate deposition of new sediment following flood plume settling. Dissolved nutrients were measured in both simulations. Basalt soils were relatively nutrient rich and released substantial quantities of organic and inorganic dissolved nutrients, particularly phosphate. However when soils were added to estuarine sediment cores and incubated, there was a net influx of phosphate from the overlying water. All soils continually released ammonium in both experiments, indicating that catchment soils may be an important source of ammonium to fuel productivity within the coastal zone. This study provides new insights into increased nitrogen availability in a nitrogen-depauperate coastal zone and identifies catchment geology as an important influence in coastal productivity through delivery of soil nitrogen to downstream estuaries.

7.
Sci Rep ; 7(1): 4740, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28684861

RESUMEN

Coastal ecosystems can be degraded by poor water quality. Tracing the causes of poor water quality back to land-use change is necessary to target catchment management for coastal zone management. However, existing models for tracing the sources of pollution require extensive data-sets which are not available for many of the world's coral reef regions that may have severe water quality issues. Here we develop a hierarchical Bayesian model that uses freely available satellite data to infer the connection between land-uses in catchments and water clarity in coastal oceans. We apply the model to estimate the influence of land-use change on water clarity in Fiji. We tested the model's predictions against underwater surveys, finding that predictions of poor water quality are consistent with observations of high siltation and low coverage of sediment-sensitive coral genera. The model thus provides a means to link land-use change to declines in coastal water quality.


Asunto(s)
Antozoos/crecimiento & desarrollo , Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente/métodos , Calidad del Agua , Animales , Teorema de Bayes , Arrecifes de Coral , Ecosistema , Fiji , Océanos y Mares , Imágenes Satelitales/estadística & datos numéricos
8.
Sci Total Environ ; 575: 1384-1394, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27720250

RESUMEN

Understanding the sources of sediment, organic matter and nitrogen (N) transferred from terrestrial to aquatic environments is important for managing the deleterious off-site impacts of soil erosion. In particular, investigating the sources of organic matter associated with fine sediment may also provide insight into carbon (C) and N budgets. Accordingly, the main sources of fine sediment, organic matter (indicated by total organic carbon), and N are determined for three nested catchments (2.5km2, 75km2, and 3076km2) in subtropical Australia. Source samples included subsoil and surface soil, along with C3 and C4 vegetation. All samples were analysed for stable isotopes (δ13C, δ15N) and elemental composition (TOC, TN). A stable isotope mixing model (SIAR) was used to determine relative source contributions for different spatial scales (nested catchments), climatic conditions and flow stages. Subsoil was the main source of fine sediment for all catchments (82%, SD=1.15) and the main N source at smaller scales (55-76%, SD=4.6-10.5), with an exception for the wet year and at the larger catchment, where surface soil was the dominant N source (55-61%, SD=3.6-9.9), though contributions were dependent on flow (59-680m3/s). C3 litter was the main source of organic C export for the two larger catchments (53%, SD=3.8) even though C4 grasses dominate the vegetation cover in these catchments. The sources of fine sediment, organic matter and N differ in subtropical catchments impacted by erosion, with the majority of C derived from C3 leaf litter and the majority of N derived from either subsoil or surface soil. Understanding these differences will assist management in reducing sediment, organic matter and N transfers in similar subtropical catchments while providing a quantitative foundation for testing C and N budgets.

9.
Sci Total Environ ; 572: 412-421, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27543945

RESUMEN

Dendroclimatology can be used to better understand past climate in regions such as Australia where instrumental and historical climate records are sparse and rarely extend beyond 100years. Here we review 36 Australian dendroclimatic studies which cover the four major climate zones of Australia; temperate, arid, subtropical and tropical. We show that all of these zones contain tree and shrub species which have the potential to provide high quality records of past climate. Despite this potential only four dendroclimatic reconstructions have been published for Australia, one from each of the climate zones: A 3592year temperature record for the SE-temperate zone, a 350year rainfall record for the Western arid zone, a 140year rainfall record for the northern tropics and a 146year rainfall record for SE-subtropics. We report on the spatial distribution of tree-ring studies, the environmental variables identified as limiting tree growth in each study, and identify the key challenges in using tree-ring records for climate reconstruction in Australia. We show that many Australian species have yet to be tested for dendroclimatological potential, and that the application of newer techniques including isotopic analysis, carbon dating, wood density measurements, and anatomical analysis, combined with traditional ring-width measurements should enable more species in each of the climate zones to be used, and long-term climate records to be developed across the entire continent.


Asunto(s)
Clima , Ecosistema , Árboles/crecimiento & desarrollo , Australia
10.
Sci Total Environ ; 497-498: 139-152, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25128884

RESUMEN

Determining the source of sediment using geochemical properties is now a widely used approach in catchment management. However the outcome of these studies often depends on the type of model used to determine the relative contribution from difference sources. Here we test the accuracy and robustness of four widely used sediment mixing models using artificial mixtures of three well-distinguished geologic sources. Sub-samples from these three sources were mixed to create four groups of samples, each consisting of five samples, with known source contributions, 20 samples in total. The source contributions to the individual and groups of artificial sediment mixtures were calculated using each of the four mixing models: Modified Hughes, Modified Collins, Landwehr and Distribution models. Unlike Modified Collins and Landwehr models which use calculated values from each tracer property of individual sources (e.g. mean and standard deviation), Hughes model uses the measured fingerprint property of replicated samples from each source and Distribution model incorporate distribution of tracers and correlation between tracer properties for sediment samples and sources. For the 20 individual sample mixtures the Distribution model provided the closest estimates to the known sediment source contribution values (Mean Absolute Error (MAE)=10.8%, and standard error (SE)=0.9%). The Modified Hughes (MAE=13.5%, SE=1.1%), Landwehr (MAE=19%, SE=1.7) and Collins models (MAE=29%, SE=2.1%) were the next accurate models, respectively. For the groups of the samples the Modified Hughes was the most robust source contribution predictor with 5.4% error. The Distribution model (MAE=6.1%) and Landwehr model (MAE=7.8%) were the second and third accurate models. Collins model with MAE of 28.3% was a significantly weaker source contribution predictor than the three other models. This study demonstrates the dependence of source attribution on model selection. The study highlight the need to test mixing model using known source and mixture samples prior to applying them to field samples. The results indicate that the Distribution and Modified Hughes models provided the most accurate source attributions using geochemical fingerprint properties.

11.
J Hum Evol ; 76: 77-82, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24953668

RESUMEN

Excavation of mock graves in sediments of aeolian and fluvial origin were conducted to test the bleaching efficiency of grave digging in materials that commonly host ancient burials in Australia. Grave-size pits were dug into Pleistocene aeolian sediments at Willandra Lakes and younger fluvial sediments on the Lachlan River, backfilled, and re-excavated. Samples for optical dating were taken from sediment infilling the mock graves and from the adjacent, undisturbed substrate, and analysed using the single aliquot-regenerative dose (SAR) protocol applied to single quartz grains. The resulting equivalent dose (De) distributions revealed that ≤1% of grains had been fully zeroed in both settings, and an additional 1-6% of poorly bleached grains were apparent in the fluvial sediments. Insufficient and heterogeneous bleaching of sediments during excavation and backfilling produced a decrease in the central dose of between 3 and 6 Gy, and an increase in over-dispersion values of between 5 and 10%. These differences were insufficient to clearly distinguish the disturbance event from the effects of bioturbation, biological mixing, or other sources of De variation. The use of the Minimum Age Model substantially over-estimated the burial age (zero years) in both depositional environments, with the degree of over-estimation increasing with the age of the host sediments. These results suggest that optically stimulated luminescence (OSL) techniques will not produce accurate ages for grave infill in a number of forensic and archaeological settings. Further study of the bleaching susceptibility of grains within grave infills, as well as the effectiveness of grave-digging as a bleaching mechanism is required. In other archaeological and geomorphological applications of OSL dating we recommend routine checks on the effective zeroing of sediments in modern equivalent situations.


Asunto(s)
Entierro , Sedimentos Geológicos , Luz Solar , Arqueología , Australia
12.
J Environ Radioact ; 124: 121-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23727879

RESUMEN

The Laura-Normanby River (catchment area: 24,350 km(2)), which drains into Princess Charlotte Bay, has been identified in previous studies as the third largest contributor of sediment to the Great Barrier Reef World Heritage Area. These catchment scale modelling studies also identified surface soil erosion as supplying >80% of the sediment. Here we use activity concentrations of the fallout radionuclides (137)Cs and (210)Pbex to test the hypothesis that surface soil erosion dominates the supply of fine (<10 µm) sediment in the river systems draining into Princess Charlotte Bay. Our results contradict these previous studies, and are consistent with channel and gully erosion being the dominant source of fine sediment in this catchment. The hypothesis that surface soil erosion dominates the supply of fine sediment to Princess Charlotte Bay is rejected. River sediment samples were collected using both time-integrated samplers and sediment drape deposits. We show that there is no detectable difference in (137)Cs and (210)Pbex activity concentrations between samples collected using these two methods. Two methods were also used to collect samples to characterise (137)Cs and (210)Pbex concentrations in sediment derived from surface soil erosion; sampling of surface-wash deposits and deployment of surface runoff traps that collected samples during rain events. While there was no difference in the (137)Cs activity concentrations for samples collected using these two methods, (210)Pbex activity concentrations were significantly higher in the samples collected using the runoff traps. The higher (210)Pbex concentrations are shown to be correlated with loss-on-ignition (r(2) = 0.79) and therefore are likely to be related to higher organic concentrations in the runoff trap samples. As a result of these differences we use a three end member mixing model (channel/gully, hillslope surface-wash and hillslope runoff traps) to determine the relative contribution from surface soil erosion. Probability distributions for (137)Cs and (210)Pbex concentrations were determined for each of the end members, with these distributions then used to estimate the surface soil contribution to each of the collected river sediment samples. The mean estimate of contribution of surface derived sediment for all river samples (n = 70) is 16 ± 2%. This study reinforces the importance of testing model predictions before they are used to target investment in remedial action and adds to the body of evidence that the primary source of sediment delivered to tropical river systems is derived from subsoil erosion.


Asunto(s)
Radioisótopos de Cesio/análisis , Sedimentos Geológicos/análisis , Radioisótopos de Plomo/análisis , Ríos , Queensland , Monitoreo de Radiación , Suelo , Movimientos del Agua
13.
Water Res ; 45(11): 3331-40, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21529880

RESUMEN

This study examined the link between terrestrial and aquatic phosphorus (P) speciation in the soils and sediments of a subtropical catchment. Specifically, the study aimed to identify the relative importance of P speciation in source soils, erosion and transport processes upstream, and aquatic transformation processes as determinants of P speciation in lake sediments (Lake Wivenhoe). Using a sequential extraction technique, NH(4)Cl extractable P (NH(4)Cl-P; exchangeable P), bicarbonate-dithionite extractable P (BD-P; reductant soluble P), NaOH extractable P (NaOH-rP; Al/Fe oxide P), HCl extractable P (HCl-P; apatite-P), and residual-P (Res-P; organic and residual inorganic P) fractions were compared in different soil/sediment compartments of the upper Brisbane River (UBR) catchment, Queensland, Australia. Multidimensional scaling identified two distinct groups of samples, one consisting of lake sediments and suspended sediments, and another consisting of riverbed sediments and soils. The riverbed sediments and soils had significantly higher HCl-P and lower NaOH-rP and Res-P relative to the lake and suspended sediments (P < 0.05). Analysis of the enrichment factors (EFs) of soils and riverbed sediments showed that fine grained particles (<63 µm) were enriched in all but the HCl-P fraction. This indicated that as finer particles are eroded from the soil surface and transported downstream there is a preferential export of non-apatite P (NaOH-rP, NaOH-nrP, BD-P and Res-P). Therefore, due to the preferential erosion and transport of fine sediments, the lake sediments contained a higher proportion of more labile forms of inorganic-P relative to the broader soil/sediment system. Our results suggest that a greater focus on the effect of selective erosion and transport on sediment P speciation in lakes and reservoirs is needed to better target management strategies aimed at reducing P availability, particularly in P-limited water bodies impacted by soil erosion.


Asunto(s)
Sedimentos Geológicos/química , Fósforo/análisis , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , Movimientos del Aire , Monitoreo del Ambiente , Agua Dulce/química , Fenómenos Geológicos , Cinética , Modelos Químicos , Fósforo/química , Suelo/química , Contaminantes del Suelo/química , Movimientos del Agua , Contaminantes Químicos del Agua/química , Tiempo (Meteorología)
14.
J Environ Radioact ; 100(10): 858-65, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19596159

RESUMEN

Fallout (137)Cs has been widely used to determine floodplain sedimentation rates in temperate environments, particularly in the northern hemisphere. Its application in low fallout, tropical environments in the southern hemisphere has been limited. In this study we assess the utility of (137)Cs for determining rates of floodplain sedimentation in a dry-tropical catchment in central Queensland, Australia. Floodplain and reference site cores were analysed in two centimetre increments, depth profiles were produced and total (137)Cs inventories calculated from the detailed profile data. Information on the rates of (137)Cs migration through local soils was obtained from the reference site soil cores. This data was used in an advection-diffusion model to account of (137)Cs mobility in floodplain sediment cores. This allowed sedimentation rates to be determined without the first year of detection for (137)Cs being known and without having to assume that (137)Cs remains immobile following deposition. Caesium-137 depth profiles in this environment are demonstrated to be an effective way of determining floodplain sedimentation rates. The total (137)Cs inventory approach was found to be less successful, with only one of the three sites analysed being in unequivocal agreement with the depth profile results. The input of sediment from catchment sources that have little, or no, (137)Cs attached results in true depositional sites having total inventories that are not significantly different from those of undisturbed reference sites.


Asunto(s)
Radioisótopos de Cesio/análisis , Sedimentos Geológicos/química , Ceniza Radiactiva/análisis , Contaminantes Radiactivos del Suelo/análisis , Australia , Inundaciones , Cinética , Monitoreo de Radiación
15.
Nature ; 421(6925): 837-40, 2003 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-12594511

RESUMEN

Australia's oldest human remains, found at Lake Mungo, include the world's oldest ritual ochre burial (Mungo III) and the first recorded cremation (Mungo I). Until now, the importance of these finds has been constrained by limited chronologies and palaeoenvironmental information. Mungo III, the source of the world's oldest human mitochondrial DNA, has been variously estimated at 30 thousand years (kyr) old, 42-45 kyr old and 62 +/- 6 kyr old, while radiocarbon estimates placed the Mungo I cremation near 20-26 kyr ago. Here we report a new series of 25 optical ages showing that both burials occurred at 40 +/- 2 kyr ago and that humans were present at Lake Mungo by 50-46 kyr ago, synchronously with, or soon after, initial occupation of northern and western Australia. Stratigraphic evidence indicates fluctuations between lake-full and drier conditions from 50 to 40 kyr ago, simultaneously with increased dust deposition, human arrival and continent-wide extinction of the megafauna. This was followed by sustained aridity between 40 and 30 kyr ago. This new chronology corrects previous estimates for human burials at this important site and provides a new picture of Homo sapiens adapting to deteriorating climate in the world's driest inhabited continent.


Asunto(s)
Arqueología , Entierro , Clima , Hominidae , Adaptación Fisiológica , Animales , Evolución Biológica , Cultura , Desastres , Emigración e Inmigración , Agua Dulce/análisis , Humanos , Nueva Gales del Sur , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...