Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Microbiol ; 20(10): e12865, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29904993

RESUMEN

Toxin A and Toxin B (TcdA/TcdB) are large glucosyltransferases produced by Clostridium difficile. TcdB but not TcdA induces reactive oxygen species-mediated early cell death (ECD) when applied at high concentrations. We found that nonglucosylated Rac1 is essential for induction of ECD since inhibition of Rac1 impedes this effect. ECD only occurs when TcdB is rapidly endocytosed. This was shown by generation of chimeras using the trunk of TcdB from a hypervirulent strain. TcdB from hypervirulent strain has been described to translocate from endosomes at higher pH values and thus, meaning faster than reference type TcdB. Accordingly, intracellular delivery of the glucosyltransferase domain of reference TcdB by the trunk of TcdB from hypervirulent strain increased ECD. Furthermore, proton transporters such as sodium/proton exchanger (NHE) or the ClC-5 anion/proton exchanger, both of which contribute to endosomal acidification, also affected cytotoxic potency of TcdB: Specific inhibition of NHE reduced cytotoxicity, whereas transfection of cells with the endosomal anion/proton exchanger ClC-5 increased cytotoxicity of TcdB. Our data suggest that both the uptake rate of TcdB into the cytosol and the status of nonglucosylated Rac1 are key determinants that are decisive for whether ECD or delayed apoptosis is triggered.


Asunto(s)
Apoptosis/fisiología , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/patogenicidad , Intercambiadores de Sodio-Hidrógeno/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Línea Celular , Glicosilación , Células HEK293 , Humanos , ATPasas de Translocación de Protón/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-28348980

RESUMEN

Virulent C. difficile toxins TcdA and TcdB invade host intestinal epithelia by endocytosis and use the acidic environment of intracellular vesicles for further processing and activation. We investigated the role of ClC-5, a chloride/proton exchanger expressed in the endosomes of gastrointestinal epithelial cells, in the activation and processing of C. difficile toxins. Enhanced intoxication by TcdA and TcdB was observed in cells expressing ClC-5 but not ClC-4, another chloride/proton exchanger with similar function but different localization. In accordance with the established physiological function of ClC-5, its expression lowered the endosomal pH in HEK293T cells by approximately 0.6 units and enhanced approximately 5-fold the internalization of TcdA. In colon HT29 cells, 34% of internalized TcdA localized to ClC-5-containing vesicles defined by colocalization with Rab5, Rab4a, and Rab7 as early and early-to-late of endosomes but not as Rab11-containing recycling endosomes. Impairing the cellular uptake of TcdA by deleting the toxin CROPs domain did not abolish the effects of ClC-5. In addition, the transport-incompetent mutant ClC-5 E268Q similarly enhanced both endosomal acidification and intoxication by TcdA but facilitated the internalization of the toxin to a lower extent. These data suggest that ClC-5 enhances the cytotoxic action of C. difficile toxins by accelerating the acidification and maturation of vesicles of the early and early-to-late endosomal system. The dispensable role of electrogenic ion transport suggests that the voltage-dependent nonlinear capacitances of mammalian CLC transporters serve important physiological functions. Our data shed light on the intersection between the endocytotic cascade of host epithelial cells and the internalization pathway of the large virulence C. difficile toxins. Identifying ClC-5 as a potential specific host ion transporter hijacked by toxins produced by pathogenic bacteria widens the horizon of possibilities for novel therapies of life-threatening gastrointestinal infections.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Canales de Cloruro/metabolismo , Clostridioides difficile/patogenicidad , Enterotoxinas/metabolismo , Compuestos de Boro , Línea Celular , Supervivencia Celular , Humanos , Concentración de Iones de Hidrógeno
3.
Cell Microbiol ; 17(6): 893-909, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25529763

RESUMEN

Clostridium difficile may induce antibiotic-associated diarrhoea and, in severe cases, pseudomembranous colitis characterized by tremendous neutrophil infiltration. All symptoms are caused by two exotoxins: TcdA and TcdB. We describe here the activation of isolated human blood neutrophils by TcdB and, moreover, by toxin fragments generated by limited proteolytical digestion. Kinetics and profiles of TcdB-induced rise in intracellular-free Ca(2+) and reactive oxygen species production were similar to that induced by fMLF, which activates the formyl peptide receptor (FPR) recognizing formylated bacterial peptide sequences. Transfection assays with the FPR-1 isoform hFPR26 in HEK293 cells, heterologous desensitization experiments and FPR inhibition via cyclosporine H strongly suggest activation of cells via FPR-1. Domain analyses revealed that the N-terminal glucosyltransferase domain of TcdB is a potent activator of FPR pointing towards an additional mechanism that might contribute to pathogenesis. This pro-inflammatory ligand effect can be triggered even by cleaved and, thus, non-cytotoxic toxin. In summary, we report (i) a ligand effect on neutrophils as completely new molecular mode of action, (ii) pathogenic potential of truncated or proteolytically cleaved 'non-cytotoxic' fragments and (iii) an interaction of the N-terminal glucosyltransferase domain instead of the C-terminal receptor binding domain of TcdB with target cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/inmunología , Neutrófilos/inmunología , Neutrófilos/microbiología , Fragmentos de Péptidos/metabolismo , Receptores de Formil Péptido/metabolismo , Células HEK293 , Humanos
4.
Toxins (Basel) ; 6(7): 2162-76, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25054784

RESUMEN

Toxin A (TcdA) and B (TcdB) from Clostridium difficile enter host cells by receptor-mediated endocytosis. A prerequisite for proper toxin action is the intracellular release of the glucosyltransferase domain by an inherent cysteine protease, which is allosterically activated by inositol hexaphosphate (IP6). We found that in in vitro assays, the C-terminally-truncated TcdA1-1065 was more efficient at IP6-induced cleavage compared with full-length TcdA. We hypothesized that the C-terminally-located combined repetitive oligopeptides (CROPs) interact with the N-terminal part of the toxin, thereby preventing autoproteolysis. Glutathione-S-transferase (GST) pull-down assays and microscale thermophoresis confirmed binding between the CROPs and the glucosyltransferase (TcdA1-542) or intermediate (TcdA1102-1847) domain of TcdA, respectively. This interaction between the N- and C-terminus was not found for TcdB. Functional assays revealed that TcdB was more susceptible to inactivation by extracellular IP6-induced cleavage. In vitro autoprocessing and inactivation of TcdA, however, significantly increased, either by acidification of the surrounding milieu or following exchange of its CROP domain by the homologous CROP domain of TcdB. Thus, TcdA CROPs contribute to the stabilization and protection of toxin conformation in addition to function as the main receptor binding domain.


Asunto(s)
Toxinas Bacterianas/metabolismo , Enterotoxinas/metabolismo , Oligopéptidos/metabolismo , Células 3T3 , Animales , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Supervivencia Celular/efectos de los fármacos , Enterotoxinas/toxicidad , Glucosiltransferasas/metabolismo , Ratones , Oligopéptidos/toxicidad , Estructura Terciaria de Proteína
5.
Cell Microbiol ; 16(11): 1678-92, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24898616

RESUMEN

TcdA and TcdB are the main pathogenicity factors of Clostridium difficile-associated diseases. Both toxins inhibit Rho GTPases, and consequently, apoptosis is induced in the affected cells. We found that TcdB at higher concentrations exhibits cytotoxic effects that are independent on Rho glucosylation. TcdB and the glucosyltransferase-deficient mutant TcdB D286/288N induced pyknotic cell death which was associated with chromatin condensation and reduced H3 phosphorylation. Affected cells showed ballooning of the nuclear envelope and loss of the integrity of the plasma membrane. Furthermore, pyknotic cells were positively stained with dihydroethidium indicating production of reactive oxygen species. In line with this, pyknosis was reduced by apocynin, an inhibitor of the NADPH oxidase. Bafilomycin A1 prevented cytotoxic effects showing that the newly observed pyknosis depends on intracellular action of TcdB rather than on a receptor-mediated effect. Blister formation and chromatin condensation was specifically induced by the glucosyltransferase domain of TcdB from strain VPI10473 since neither TcdBF from cdi1470 nor the chimera of TcdB harbouring the glucosyltransferase domain of TcdBF was able to induce these effects. In summary, TcdB induces two different and independent phenotypes: (i) cell rounding due to glucosylation of Rho GTPases and (ii) shrinkage of cells and nuclear blister induced by the high concentrations of TcdB independent of Rho glucosylation.


Asunto(s)
Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Muerte Celular , Núcleo Celular/patología , Cromatina/metabolismo , Glucosiltransferasas/toxicidad , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Línea Celular , Membrana Celular/patología , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glicosilación , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Histonas/metabolismo , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/toxicidad , Membrana Nuclear/patología , Fosforilación , Procesamiento Proteico-Postraduccional , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Unión al GTP rho/metabolismo
6.
J Med Microbiol ; 62(Pt 9): 1414-1422, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23558138

RESUMEN

The combined repetitive oligopeptides (CROPs) of Clostridium difficile toxins A (TcdA) and B (TcdB) induce clathrin-mediated endocytosis of the toxins. Inconsistently, CROP-truncated TcdA(1-1874) is also capable of entering host cells and displaying full cytotoxic properties although with less potency. Pre-incubation of cells with isolated CROPs, however, reconstitutes the reduced uptake of TcdA(1-1874) to the level of the full-length toxin. We believe that TcdA exhibits an additional binding motif beyond the C-terminally located CROP domain, which might interact with cellular receptor structures that are associated with alternative internalization pathways. This study therefore evaluated endocytosis routes of CROP-dependent cellular uptake for TcdA and CROP-independent cellular uptake for TcdA(1-1874). Clathrin knockdown or inhibition with chlorpromazine affected subsequent internalization of TcdA and TcdA(1-1874), although only to some extent, arguing for alternative, clathrin-independent endocytosis routes. Inhibition of dynamin, a GTPase essentially involved in clathrin-mediated endocytosis as well as in various clathrin-independent uptake mechanisms, affected uptake of TcdA to the same extent as clathrin inhibition. In contrast, uptake of TcdA(1-1874) was almost completely eliminated in dynamin-inhibited cells. Thus, clathrin-independent uptake of TcdA(1-1874) presumably depends on dynamin. These findings demonstrate that the toxins are endocytosed via complex pathways involving clathrin and dynamin, putatively enabling them to adapt to mechanisms of various cell types. With regard to the emergence of C. difficile strains producing C-terminally truncated toxins, this study emphasizes the relevance of elucidating toxin uptake as a prerequisite for the development of toxin intervention strategies.


Asunto(s)
Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Endocitosis , Enterotoxinas/metabolismo , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Clorpromazina/farmacología , Clatrina/genética , Clatrina/metabolismo , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/genética , Dinaminas/metabolismo , Enterotoxinas/genética , Células HT29 , Humanos , Macrólidos/farmacología , Oligopéptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia
7.
Microb Pathog ; 52(1): 92-100, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22107906

RESUMEN

The small open reading frame tcdE is located between the genes tcdA and tcdB which encode toxin A (TcdA) and B (TcdB), respectively, within the pathogenicity locus of Clostridium difficile. Sequence and structure similarities to bacteriophage-encoded holins have led to the assumption that TcdE mediates the release of the toxins from C. difficile into the extracellular environment. A TcdE-deficient C. difficile 630 strain was generated by insertional inactivation of the tcdE gene. Data revealed that TcdE does not regulate or affect growth or sporogenesis. TcdE-deficiency was accompanied by a moderately increased accumulation of TcdA and TcdB prior to sporulation in this microorganism. Interestingly, this observation did not correlate with a delayed or inhibited toxin release: inactivation of TcdE neither significantly altered kinetics of release nor the absolute level of secreted TcdA and TcdB, indicating that TcdE does not account for the pathogenicity of C. difficile strain 630. Furthermore, mass spectrometry analysis could not reveal differences in the secretome of wild type and TcdE-deficient C. difficile, indicating that TcdE did not function as a secretion system for protein release. TcdE was expressed as a 19 kDa protein in C. difficile, whereas TcdE expressed in Escherichia coli appeared as a 19 and 16 kDa protein. Expression of the short 16 kDa TcdE correlated with bacterial cell death. We conclude that TcdE does not exhibit pore-forming function in C. difficile since in these cells only the non-lytic full length 19 kDa protein is expressed.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Enterotoxinas/metabolismo , Silenciador del Gen , Toxinas Bacterianas/genética , Línea Celular , Clostridioides difficile/genética , Enterotoxinas/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Transporte de Proteínas
8.
PLoS One ; 6(3): e17623, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21445253

RESUMEN

The pathogenicity of Clostridium difficile is primarily linked to secretion of the intracellular acting toxins A (TcdA) and B (TcdB) which monoglucosylate and thereby inactivate Rho GTPases of host cells. Although the molecular mode of action of TcdA and TcdB is well understood, far less is known about toxin binding and uptake. It is acknowledged that the C-terminally combined repetitive oligopeptides (CROPs) of the toxins function as receptor binding domain. The current study evaluates the role of the CROP domain with respect to functionality of TcdA and TcdB. Therefore, we generated truncated TcdA devoid of the CROPs (TcdA(1-1874)) and found that this mutant was still cytopathic. However, TcdA(1-1874) possesses about 5 to 10-fold less potency towards 3T3 and HT29 cells compared to the full length toxin. Interestingly, CHO-C6 cells even showed almost identical susceptibility towards truncated and full length TcdA concerning Rac1 glucosylation or cell rounding, respectively. FACS and Western blot analyses elucidated these differences and revealed a correlation between CROP-binding to the cell surface and toxin potency. These findings refute the accepted opinion of solely CROP-mediated toxin internalization. Competition experiments demonstrated that presence neither of TcdA CROPs nor of full length TcdA reduced binding of truncated TcdA(1-1874) to HT29 cells. We assume that toxin uptake might additionally occur through alternative receptor structures and/or other associated endocytotic pathways. The second assumption was substantiated by TER measurements showing that basolaterally applied TcdA(1-1874) exhibits considerably higher cytotoxic potency than apically applied mutant or even full length TcdA, the latter being almost independent of the side of application. Thus, different routes for cellular uptake might enable the toxins to enter a broader repertoire of cell types leading to the observed multifarious pathogenesis of C. difficile.


Asunto(s)
Toxinas Bacterianas/metabolismo , Enterotoxinas/metabolismo , Oligopéptidos/metabolismo , Células 3T3 , Animales , Toxinas Bacterianas/toxicidad , Secuencia de Bases , Western Blotting , Células CHO , Cricetinae , Cricetulus , Cartilla de ADN , Endocitosis/efectos de los fármacos , Enterotoxinas/toxicidad , Células HT29 , Humanos , Ratones , Microscopía Fluorescente , Oligopéptidos/química
9.
Naunyn Schmiedebergs Arch Pharmacol ; 383(3): 253-62, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21046073

RESUMEN

Toxin A and toxin B from Clostridium difficile are the causative agents of the antibiotic-associated pseudomembranous colitis. They are of an A/B structure type and possess inositol hexakisphosphate-inducible autoproteolytic activity to release their glucosyltransferase domain to the cytoplasm of target cells. In this study, we investigated the effect of extracellular and intracellular autoproteolytic cleavage on the function of TcdA. Extracellular cleavage led to functional inactivation albeit TcdA was less susceptible to inositol hexakisphosphate-induced autoproteolysis than TcdB. A non-cleavable TcdA mutant (TcdA A541 G542 A543) was generated to investigate whether autoproteolysis is a prerequisite for intracellular function of TcdA. Although the EC(50) regarding cell rounding was about 75-fold reduced in short-term assay, non-cleavable TcdA was able to induce complete cell rounding and apoptosis after 36 h comparable to wildtype TcdA when continuously present. Studies with limited uptake of toxins revealed progressive Rac1 glucosylation and complete cell rounding for TcdA, whereas the effect induced by non-cleavable TcdA was reversible. These findings argue for cytosolic accumulation of the released glucosyltransferase domain of wild-type TcdA and rapid degradation of the non-cleavable TcdA. In summary, extracellular cleavage functionally inactivates TcdA (and TcdB), whereas intracellular autoproteolytic cleavage is not essential for function of TcdA but defines its potency.


Asunto(s)
Toxinas Bacterianas/metabolismo , Proteasas de Cisteína/metabolismo , Citotoxinas/metabolismo , Enterotoxinas/metabolismo , Sustitución de Aminoácidos/fisiología , Animales , Apoptosis/efectos de los fármacos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Toxinas Bacterianas/química , Toxinas Bacterianas/farmacología , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Membrana Celular/metabolismo , Forma de la Célula/efectos de los fármacos , Citosol/metabolismo , Citotoxinas/química , Citotoxinas/farmacología , Ditiotreitol/química , Relación Dosis-Respuesta a Droga , Enterotoxinas/química , Enterotoxinas/farmacología , Glucosiltransferasas/metabolismo , Glicosilación , Células HT29 , Humanos , Ratones , Células 3T3 NIH , Fragmentos de Péptidos/metabolismo , Ácido Fítico/química , Estructura Terciaria de Proteína/fisiología , Proteínas Recombinantes/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
10.
Cell Microbiol ; 11(12): 1816-26, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19709124

RESUMEN

Clostridium difficile toxin A and B (TcdA/TcdB) are glucosyltransferases that glucosylate GTPases of the Rho family. The epidermal growth factor (EGF) positively modulates C. difficile toxin-induced disturbance of the intestinal barrier function by an unknown mechanism. We found that EGF-treated CaCo-2 monolayers were less susceptible to TcdA-catalysed glucosylation of Rac1 but not of RhoA, which correlated with phosphorylation of Rac1 at Ser-71. Phospho-Rac1/phospho-Cdc42 (Ser-71) still bound to the PAK-CRIB domain indicating an active state. A more detailed characterization of phospho-Rac1 was performed using the phosphomimetic mutant Rac1 S71E. Ectopic expression of Rac1 S71E induced a specific phenotype of cells showing an increase in filopodial structures that were also induced by EGF. Rac1 S71E (and Cdc42 S71E) but not Rac1 S71A was at least fivefold weaker substrate for TcdA-catalysed glucosylation compared with wild type Rac1. The protective effect was checked in transfection experiments where Rac1 S71E and, to a lesser extent, Cdc42 S71E reduced the TcdA-induced cytopathic effect. Thus, Ser-71 phosphorylation of Rac1 might be interesting for modulation of microbial pathogenesis where Rho GTPases, especially Rac1 and Cdc42, are involved. In addition, this is the first description of a specific functional outcome of Rac1 phosphorylation at Ser-71.


Asunto(s)
Toxinas Bacterianas/metabolismo , Clostridioides difficile/patogenicidad , Enterocolitis Seudomembranosa/metabolismo , Enterotoxinas/metabolismo , Serina/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Células CACO-2 , Clostridioides difficile/metabolismo , Enterocolitis Seudomembranosa/microbiología , Factor de Crecimiento Epidérmico/metabolismo , Interacciones Huésped-Patógeno , Humanos , Intestinos/microbiología , Intestinos/fisiología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especificidad por Sustrato , Virulencia , Proteína de Unión al GTP rhoA/metabolismo
11.
J Med Microbiol ; 57(Pt 6): 765-770, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18480335

RESUMEN

The intestinal epithelial cell line HT-29 was used to study the apoptotic effect of Clostridium difficile toxin A (TcdA). TcdA is a 300 kDa single-chain protein, which glucosylates and thereby inactivates small GTPases of the Rho family (Rho, Rac and Cdc42). The effect of TcdA-catalysed glucosylation of the Rho GTPases is well known: reorganization of the actin cytoskeleton with accompanying morphological changes in cells, leading to complete rounding of cells and destruction of the intestinal barrier function. Less is known about the mechanism by which apoptosis is induced in TcdA-treated cells. In this study, TcdA induced the activation of caspase-3, -8 and -9. Apoptosis, as estimated by the DNA content of cells, started as early as 24 h after the addition of TcdA. The impact of Rho glucosylation was obvious when mutant TcdA with reduced or deficient glucosyltransferase activity was applied. TcdA mutant W101A, with 50-fold reduced glucosyltransferase activity, induced apoptosis only at an equipotent concentration compared with wild-type TcdA at a 50% effective concentration of 0.2 nM. The enzyme-deficient mutant TcdA D285/287N was not able to induce apoptosis. Apoptosis induced by TcdA strictly depended on the activation of caspases, and was completely blocked by the pan-caspase inhibitor z-VAD-fmk. Destruction of the actin cytoskeleton by latrunculin B was not sufficient to induce apoptosis, indicating that apoptosis induced by TcdA must be due to another mechanism. In summary, TcdA-induced apoptosis (cytotoxic effect) depends on the glucosylation of Rho GTPases, but is not triggered by destruction of the actin cytoskeleton (cytopathic effect).


Asunto(s)
Apoptosis/efectos de los fármacos , Toxinas Bacterianas/metabolismo , Enterotoxinas/metabolismo , Células Epiteliales/efectos de los fármacos , Mucosa Intestinal/citología , Proteínas de Unión al GTP rho/metabolismo , Caspasas/metabolismo , Activación Enzimática , Glicosilación , Células HT29 , Humanos , Mucosa Intestinal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...