Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Ecol Evol ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103674

RESUMEN

Global change is associated with variable shifts in the annual production of aboveground plant biomass, suggesting localized sensitivities with unclear causal origins. Combining remotely sensed normalized difference vegetation index data since the 1980s with contemporary field data from 84 grasslands on 6 continents, we show a widening divergence in site-level biomass ranging from +51% to -34% globally. Biomass generally increased in warmer, wetter and species-rich sites with longer growing seasons and declined in species-poor arid areas. Phenological changes were widespread, revealing substantive transitions in grassland seasonal cycling. Grazing, nitrogen deposition and plant invasion were prevalent in some regions but did not predict overall trends. Grasslands are undergoing sizable changes in production, with implications for food security, biodiversity and carbon storage especially in arid regions where declines are accelerating.

3.
Sci Data ; 11(1): 305, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509110

RESUMEN

Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m-2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic.


Asunto(s)
Ecosistema , Plantas , Árboles , Regiones Árticas , Biomasa
4.
New Phytol ; 242(3): 988-999, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38375943

RESUMEN

Seasonal dynamics of root growth play an important role in large-scale ecosystem processes; they are largely governed by growth regulatory compounds and influenced by environmental conditions. Yet, our knowledge about physiological drivers of root growth is mostly limited to laboratory-based studies on model plant species. We sampled root tips of Eriophorum vaginatum and analyzed their auxin concentrations and meristem lengths biweekly over a growing season in situ in a subarctic peatland, both in surface soil and at the permafrost thawfront. Auxin concentrations were almost five times higher in surface than in thawfront soils and increased over the season, especially at the thawfront. Surprisingly, meristem length showed an opposite pattern and was almost double in thawfront compared with surface soils. Meristem length increased from peak to late season in the surface soils but decreased at the thawfront. Our study of in situ seasonal dynamics in root physiological parameters illustrates the potential for physiological methods to be applied in ecological studies and emphasizes the importance of in situ measurements. The strong effect of root location and the unexpected opposite patterns of meristem length and auxin concentrations likely show that auxin actively governs root growth to ensure a high potential for nutrient uptake at the thawfront.


Asunto(s)
Proteínas de Arabidopsis , Meristema , Ácidos Indolacéticos/farmacología , Estaciones del Año , Raíces de Plantas/metabolismo , Ecosistema , Suelo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Proc Biol Sci ; 291(2016): 20232361, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38351802

RESUMEN

Reports of fading vole and lemming population cycles and persisting low populations in some parts of the Arctic have raised concerns about the spread of these fundamental changes to tundra food web dynamics. By compiling 24 unique time series of lemming population fluctuations across the circumpolar region, we show that virtually all populations displayed alternating periods of cyclic/non-cyclic fluctuations over the past four decades. Cyclic patterns were detected 55% of the time (n = 649 years pooled across sites) with a median periodicity of 3.7 years, and non-cyclic periods were not more frequent in recent years. Overall, there was an indication for a negative effect of warm spells occurring during the snow onset period of the preceding year on lemming abundance. However, winter duration or early winter climatic conditions did not differ on average between cyclic and non-cyclic periods. Analysis of the time series shows that there is presently no Arctic-wide collapse of lemming cycles, even though cycles have been sporadic at most sites during the last decades. Although non-stationary dynamics appears a common feature of lemming populations also in the past, continued warming in early winter may decrease the frequency of periodic irruptions with negative consequences for tundra ecosystems.


Asunto(s)
Arvicolinae , Ecosistema , Animales , Dinámica Poblacional , Estaciones del Año , Cadena Alimentaria , Regiones Árticas
6.
Ecology ; 105(2): e4212, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37996966

RESUMEN

Human-mediated dispersal of non-native earthworms can cause substantial changes to the functioning and composition of ecosystems previously earthworm-free. Some of these earthworm species have the potential to "geoengineer" soils and increase plant nitrogen (N) uptake. Yet the possible consequences of increased plant N concentrations on rodent grazing remains poorly understood. In this study, we present findings from a common garden experiment with two tundra communities, meadow (forb dominated) and heath (shrub dominated), half of them subjected to 4 years of earthworm presence (Lumbricus spp. and Aporrectodea spp.). Within four summers, our earthworm treatment changed plant community composition by increasing graminoid density by, on average, 94% in the heath vegetation and by 49% in the meadow. Rodent winter grazing was more intense on plants growing in soils with earthworms, an effect that coincided with higher N concentrations in plants, indicating a higher palatability. Even though earthworms reduced soil moisture, plant community productivity, as indicated by vegetation greenness (normalized difference vegetation index), was not negatively impacted. We conclude that earthworm-induced changes in plant composition and trophic interactions may fundamentally alter the functioning of tundra ecosystems.


Asunto(s)
Ecosistema , Oligoquetos , Animales , Humanos , Tundra , Plantas , Suelo
7.
Oecologia ; 201(1): 229-240, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36424509

RESUMEN

Ungulates play an important role in temperate systems. Through their feeding behaviour, they can respond to vegetation by selecting patches or modify vegetation composition by herbivory. The degree in which they interact with vegetation can either reinforce landscape heterogeneity by creating disturbance or reduce heterogeneity in case of overbrowsing. This study evaluates how bottom-up (patch quality, structure), top-down forces (hunting, distance to village, forest edge) and deer features (feeding type, abundance) mediate patch utilization in a temperate forest and assess the implications of patch utilization and light on forest recruitment. Theory predicts that animals seek to maximize their energetic gains by food intake while minimizing the costs associated to foraging, such as the energy required for avoiding predators and exploiting resources. We focused on two deer species with contrasting feeding type: a browser (C. capreolus) and a mixed feeder (C. elaphus). We paired camera traps to vegetation sub-plots in ten forest sites in the Netherlands that widely ranged in deer abundance and landscape heterogeneity. Results showed that patch utilization is simultaneously explained by bottom-up, top-down forces and by deer abundance, as predicted by the safety-in-numbers hypothesis. Yet, forces best explaining patch utilization differed between deer species. Overall, higher patch utilization came with higher browsing, lower tree diversity and a large difference in forest composition: from a mix of broadleaves and conifers towards only conifers. We conclude that these two deer species, although living in the same area and belonging to the same guild, differentially perceive, interact with and shape their surrounding landscape.


Asunto(s)
Ciervos , Conducta Alimentaria , Bosques , Animales , Ciervos/fisiología , Herbivoria , Árboles , Densidad de Población , Biodiversidad , Especificidad de la Especie
8.
New Phytol ; 238(6): 2621-2633, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36519258

RESUMEN

Global vegetation regimes vary in belowground carbon (C) and nitrogen (N) dynamics. However, disentangling large-scale climatic controls from the effects of intrinsic plant-soil-microbial feedbacks on belowground processes is challenging. In local gradients with similar pedo-climatic conditions, effects of plant-microbial feedbacks may be isolated from large-scale drivers. Across a subarctic-alpine mosaic of historic grazing fields and surrounding heath and birch forest, we evaluated whether vegetation-specific plant-microbial feedbacks involved contrasting N cycling characteristics and C and N stocks in the organic topsoil. We sequenced soil fungi, quantified functional genes within the inorganic N cycle, and measured 15 N natural abundance. In grassland soils, large N stocks and low C : N ratios associated with fungal saprotrophs, archaeal ammonia oxidizers, and bacteria capable of respiratory ammonification, indicating maintained inorganic N cycling a century after abandoned reindeer grazing. Toward forest and heath, increasing abundance of mycorrhizal fungi co-occurred with transition to organic N cycling. However, ectomycorrhizal fungal decomposers correlated with small soil N and C stocks in forest, while root-associated ascomycetes associated with small N but large C stocks in heath, uncoupling C and N storage across vegetation types. We propose that contrasting, positive plant-microbial feedbacks stabilize vegetation trajectories, resulting in diverging soil C : N ratios at the landscape scale.


Asunto(s)
Micorrizas , Suelo , Retroalimentación , Plantas/microbiología , Bosques , Carbono , Microbiología del Suelo , Nitrógeno
9.
Ecol Evol ; 11(21): 14598-14614, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34765128

RESUMEN

Herbivore grazing is an important determinant of plant community assemblages. Thus, it is essential to understand its impact to direct conservation efforts in regions where herbivores are managed. While the impacts of reindeer (Rangifer tarandus) grazing on plant biodiversity and community composition in the Fennoscandian tundra are well studied, the impact of reindeer grazing on phylogenetic community structure is not. We used data from a multiyear quasi-experimental study in northern Fennoscandia to analyze the effect of reindeer grazing on plant community diversity including its phylogenetic structure. Our study design used a permanent fence constructed in the 1960s and temporary fences constructed along the permanent fence to expose plant communities to three different grazing regimes: light (almost never grazed), pulse (grazed every other year), and press (chronic grazing for over 40 years). Similar to previous studies on low productivity ecosystems in this region, the species richness and evenness of plant communities with pulse and press grazing did not differ from communities with light grazing. Also consistent with previous studies in this region, we observed a transition from shrub-dominated communities with light grazing to graminoid-dominated communities with pulse and press grazing. Interestingly, communities with pulse, but not press, grazing were more phylogenetically dispersed than communities with light grazing. If grazing pulses can increase the phylogenetic diversity of plant communities, our result suggests changes in reindeer management allowing for pulses of grazing to increase phylogenetic diversity of plant communities.

10.
Sci Rep ; 11(1): 19468, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593844

RESUMEN

Understanding how herbivores shape plant biomass and distribution is a core challenge in ecology. Yet, the lack of suitable remote sensing technology limits our knowledge of temporal and spatial impacts of mammal herbivores in the Earth system. The regular interannual density fluctuations of voles and lemmings are exceptional with their large reduction of plant biomass in Arctic landscapes during peak years (12-24%) as previously shown at large spatial scales using satellites. This provides evidence that herbivores are important drivers of observed global changes in vegetation productivity. Here, we use a novel approach with repeated unmanned aerial vehicle (UAV) flights, to map vegetation impact by rodents, indicating that many important aspects of vegetation dynamics otherwise hidden by the coarse resolution of satellite images, including plant-herbivore interactions, can be revealed using UAVs. We quantify areas impacted by rodents at four complex Arctic landscapes with very high spatial resolution UAV imagery to get a new perspective on how herbivores shape Arctic ecosystems. The area impacted by voles and lemmings is indeed substantial, larger at higher altitude tundra environments, varies between habitats depending on local snow cover and plant community composition, and is heterogeneous even within habitats at submeter scales. Coupling this with spectral reflectance of vegetation (NDVI), we can show that the impact on central ecosystem properties like GPP and biomass is stronger than currently accounted for in Arctic ecosystems. As an emerging technology, UAVs will allow us to better disentangle important information on how herbivores maintain spatial heterogeneity, function and diversity in natural ecosystems.

11.
Ecol Evol ; 11(17): 12141-12152, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34522366

RESUMEN

Large and small mammalian herbivores are present in most vegetated areas in the Arctic and often have large impacts on plant community composition and ecosystem functioning. The relative importance of different herbivores and especially how their specific impact on the vegetation varies across the Arctic is however poorly understood.Here, we investigate how large and small herbivores influence vegetation density and plant community composition in four arctic vegetation types in Scandinavia and Alaska. We used a unique set of exclosures, excluding only large (reindeer and muskoxen) or all mammalian herbivores (also voles and lemmings) for at least 20 years.We found that mammalian herbivores in general decreased leaf area index, NDVI, and abundance of vascular plants in all four locations, even though the strength of the effect and which herbivore type caused these effects differed across locations. In three locations, herbivore presence caused contrasting plant communities, but not in the location with lowest productivity. Large herbivores had a negative effect on plant height, whereas small mammalian herbivores increased species diversity by decreasing dominance of the initially dominating plant species. Above- or belowground disturbances caused by herbivores were found to play an important role in shaping the vegetation in all locations.Synthesis: Based on these results, we conclude that both small and large mammalian herbivores influence vegetation in Scandinavia and Alaska in a similar way, some of which can mitigate effects of climate change. We also see important differences across locations, but these depend rather on local herbivore and plant community composition than large biogeographical differences among continents.

12.
Glob Chang Biol ; 27(20): 5070-5083, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34297435

RESUMEN

Arctic plants are adapted to climatic variability, but their long-term responses to warming remain unclear. Responses may occur by range shifts, phenological adjustments in growth and reproduction, or both. Here, we compare distribution and phenology of 83 arctic and boreal mountain species, sampled identically in the early 20th (1917-1919) and 21st centuries (2017-2018) from a region of northern Sweden that has warmed significantly. We test two compensatory hypotheses to high-latitude warming-upward shifts in distribution, and earlier or extended growth and reproduction. For distribution, we show dramatic upward migration by 69% of species, averaging 6.1 m per decade, especially boreal woodland taxa whose upward expansion has reduced arctic montane habitat by 30%. Twenty percent of summit species showed distributional shifts but downward, especially moisture-associated snowbed flora. For phenology, we detected wide inter-annual variability in the onset of leafing and flowering in both eras. However, there was no detectable change in growing-season length, relating to two mechanisms. First, plot-level snow melt data starting in 1917 demonstrated that melt date, rather than vernal temperatures, better predicts plant emergence, with snow melt influenced by warmer years having greater snowfall-warmer springs did not always result in earlier emergence because snowbeds can persist longer. Second, the onset of reproductive senescence between eras was similar, even when plant emergence was earlier by a month, possibly due to intensified summer heat stress or hard-wired 'canalization' where senescence occurs regardless of summer temperature. Migrations in this system have possibly buffered arctic species against displacement by boreal expansion and warming, but ongoing temperature increases, woody plant invasion, and a potential lack of flexibility in timing of senescence may foreshadow challenges.


Asunto(s)
Ecosistema , Nieve , Regiones Árticas , Cambio Climático , Estaciones del Año , Temperatura
13.
Glob Chang Biol ; 26(12): 6742-6752, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33020977

RESUMEN

Variation in intraspecific traits is one important mechanism that can allow plant species to respond to global changes. Understanding plant trait responses to environmental changes such as grazing patterns, nutrient enrichment and climate warming is, thus, essential for predicting the composition of future plant communities. We measured traits of eight common tundra species in a fully factorial field experiment with mammalian herbivore exclusion, fertilization, and passive warming, and assessed how trait responsiveness to the treatments was associated with abundance changes in those treatments. Herbivory exhibited the strongest impact on traits. Exclusion of herbivores increased vegetative plant height by 50% and specific leaf area (SLA) by 19%, and decreased foliar C:N by 11%; fertilization and warming also increased height and SLA but to a smaller extent. Herbivory also modulated intraspecific height, SLA and foliar C:N responses to fertilization and warming, and these interactions were species-specific. Furthermore, herbivory affected how trait change translated into relative abundance change: increased height under warming and fertilization was more positively related to abundance change inside fences than in grazed plots. Our findings highlight the key role of mammalian herbivory when assessing intraspecific trait change in tundra and its consequences for plant performance under global changes.


Asunto(s)
Herbivoria , Tundra , Animales , Cambio Climático , Nutrientes , Plantas
14.
Glob Chang Biol ; 26(10): 5754-5766, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32715578

RESUMEN

Climate warming enables tree seedling establishment beyond the current alpine treeline, but to achieve this, seedlings have to establish within existing tundra vegetation. In tundra, mosses are a prominent feature, known to regulate soil temperature and moisture through their physical structure and associated water retention capacity. Moss presence and species identity might therefore modify the impact of increases in temperature and precipitation on tree seedling establishment at the arctic-alpine treeline. We followed Betula pubescens and Pinus sylvestris seedling survival and growth during three growing seasons in the field. Tree seedlings were transplanted along a natural precipitation gradient at the subarctic-alpine treeline in northern Sweden, into plots dominated by each of three common moss species and exposed to combinations of moss removal and experimental warming by open-top chambers (OTCs). Independent of climate, the presence of feather moss, but not Sphagnum, strongly supressed survival of both tree species. Positive effects of warming and precipitation on survival and growth of B. pubescens seedlings occurred in the absence of mosses and as expected, this was partly dependent on moss species. P. sylvestris survival was greatest at high precipitation, and this effect was more pronounced in Sphagnum than in feather moss plots irrespective of whether the mosses had been removed or not. Moss presence did not reduce the effects of OTCs on soil temperature. Mosses therefore modified seedling response to climate through other mechanisms, such as altered competition or nutrient availability. We conclude that both moss presence and species identity pose a strong control on seedling establishment at the alpine treeline, and that in some cases mosses weaken climate-change effects on seedling establishment. Changes in moss abundance and species composition therefore have the potential to hamper treeline expansion induced by climate warming.


Asunto(s)
Briófitas , Árboles , Regiones Árticas , Plantones , Suecia
15.
Nat Commun ; 11(1): 1766, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286301

RESUMEN

Arctic plant growth is predominantly nitrogen (N) limited. This limitation is generally attributed to slow soil microbial processes due to low temperatures. Here, we show that arctic plant-soil N cycling is also substantially constrained by the lack of larger detritivores (earthworms) able to mineralize and physically translocate litter and soil organic matter. These new functions provided by earthworms increased shrub and grass N concentration in our common garden experiment. Earthworm activity also increased either the height or number of floral shoots, while enhancing fine root production and vegetation greenness in heath and meadow communities to a level that exceeded the inherent differences between these two common arctic plant communities. Moreover, these worming effects on plant N and greening exceeded reported effects of warming, herbivory and nutrient addition, suggesting that human spreading of earthworms may lead to substantial changes in the structure and function of arctic ecosystems.


Asunto(s)
Nitrógeno/metabolismo , Oligoquetos/fisiología , Plantas/metabolismo , Animales , Regiones Árticas , Ecosistema , Raíces de Plantas/fisiología , Brotes de la Planta/fisiología , Poaceae
16.
New Phytol ; 227(6): 1818-1830, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32248524

RESUMEN

In arctic ecosystems, climate change has increased plant productivity. As arctic carbon (C) stocks predominantly are located belowground, the effects of greater plant productivity on soil C storage will significantly determine the net sink/source potential of these ecosystems, but vegetation controls on soil CO2 efflux remain poorly resolved. In order to identify the role of canopy-forming species in belowground C dynamics, we conducted a girdling experiment with plots distributed across 1 km2 of treeline birch (Betula pubescens) forest and willow (Salix lapponum) patches in northern Sweden and quantified the contribution of canopy vegetation to soil CO2 fluxes and belowground productivity. Girdling birches reduced total soil CO2 efflux in the peak growing season by 53%, which is double the expected amount, given that trees contribute only half of the total leaf area in the forest. Root and mycorrhizal mycelial production also decreased substantially. At peak season, willow shrubs contributed 38% to soil CO2 efflux in their patches. Our findings indicate that C, recently fixed by trees and tall shrubs, makes a substantial contribution to soil respiration. It is critically important that these processes are taken into consideration in the context of a greening arctic because productivity and ecosystem C sequestration are not synonymous.


Asunto(s)
Ecosistema , Suelo , Regiones Árticas , Dióxido de Carbono , Rizosfera , Suecia
17.
Sci Rep ; 10(1): 4170, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32184407

RESUMEN

Climate change will cause a substantial future greenhouse gas release from warming and thawing permafrost-affected soils to the atmosphere enabling a positive feedback mechanism. Increasing the population density of big herbivores in northern high-latitude ecosystems will increase snow density and hence decrease the insulation strength of snow during winter. As a consequence, theoretically 80% of current permafrost-affected soils (<10 m) is projected to remain until 2100 even when assuming a strong warming using the Representative Concentration Pathway 8.5. Importantly, permafrost temperature is estimated to remain below -4 °C on average after increasing herbivore population density. Such ecosystem management practices would be therefore theoretically an important additional climate change mitigation strategy. Our results also highlight the importance of new field experiments and observations, and the integration of fauna dynamics into complex Earth System models, in order to reliably project future ecosystem functions and climate.


Asunto(s)
Cambio Climático , Ecosistema , Herbivoria , Hielos Perennes , Densidad de Población , Suelo/química , Animales , Atmósfera , Ciclo del Carbono , Monitoreo del Ambiente , Gases de Efecto Invernadero
18.
Ambio ; 49(3): 786-800, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31332767

RESUMEN

Lemmings are a key component of tundra food webs and changes in their dynamics can affect the whole ecosystem. We present a comprehensive overview of lemming monitoring and research activities, and assess recent trends in lemming abundance across the circumpolar Arctic. Since 2000, lemmings have been monitored at 49 sites of which 38 are still active. The sites were not evenly distributed with notably Russia and high Arctic Canada underrepresented. Abundance was monitored at all sites, but methods and levels of precision varied greatly. Other important attributes such as health, genetic diversity and potential drivers of population change, were often not monitored. There was no evidence that lemming populations were decreasing in general, although a negative trend was detected for low arctic populations sympatric with voles. To keep the pace of arctic change, we recommend maintaining long-term programmes while harmonizing methods, improving spatial coverage and integrating an ecosystem perspective.


Asunto(s)
Arvicolinae , Ecosistema , Animales , Regiones Árticas , Canadá , Dinámica Poblacional , Federación de Rusia
20.
Sci Adv ; 5(12): eaaw9883, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31840060

RESUMEN

Over the past decade, the Arctic has warmed by 0.75°C, far outpacing the global average, while Antarctic temperatures have remained comparatively stable. As Earth approaches 2°C warming, the Arctic and Antarctic may reach 4°C and 2°C mean annual warming, and 7°C and 3°C winter warming, respectively. Expected consequences of increased Arctic warming include ongoing loss of land and sea ice, threats to wildlife and traditional human livelihoods, increased methane emissions, and extreme weather at lower latitudes. With low biodiversity, Antarctic ecosystems may be vulnerable to state shifts and species invasions. Land ice loss in both regions will contribute substantially to global sea level rise, with up to 3 m rise possible if certain thresholds are crossed. Mitigation efforts can slow or reduce warming, but without them northern high latitude warming may accelerate in the next two to four decades. International cooperation will be crucial to foreseeing and adapting to expected changes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA