Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Cybern ; 115(3): 245-265, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33997912

RESUMEN

Detection of looming obstacles is a vital task for both natural and artificial systems. Locusts possess a visual nervous system with an extensively studied obstacle detection pathway, culminating in the lobula giant movement detector (LGMD) neuron. While numerous models of this system exist, none to date have incorporated recent data on the anatomy and function of feedforward and global inhibitory systems in the input network of the LGMD. Moreover, the possibility that global and lateral inhibition shape the feedforward inhibitory signals to the LGMD has not been investigated. To address these points, a novel model of feedforward inhibitory neurons in the locust optic lobe was developed based on the recent literature. This model also incorporated global and lateral inhibition into the afferent network of these neurons, based on their observed behaviour in existing data and the posited role of these mechanisms in the inputs to the LGMD. Tests with the model showed that it accurately replicates the behaviour of feedforward inhibitory neurons in locusts; the model accurately coded for stimulus angular size in an overall linear fashion, with decreasing response saturation and increasing linearity as stimulus size increased or approach velocity decreased. The model also exhibited only phasic responses to the appearance of a grating, along with sustained movement by it at constant speed. By observing the effects of altering inhibition schemes on these responses, it was determined that global inhibition serves primarily to normalize growing excitation as collision approaches, and keeps coding for subtense angle linear. Lateral inhibition was determined to suppress tonic responses to wide-field stimuli translating at constant speed. Based on these features being shared with characterizations of the LGMD input network, it was hypothesized that the feedforward inhibitory neurons and the LGMD share the same excitatory afferents; this necessitates further investigation.


Asunto(s)
Saltamontes , Percepción de Movimiento , Animales
2.
J Exp Biol ; 221(Pt 24)2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30341087

RESUMEN

Adaptive collision avoidance behaviours require accurate detection of complex spatiotemporal properties of an object approaching in an animal's natural, three-dimensional environment. Within the locust, the lobula giant movement detector and its postsynaptic partner, the descending contralateral movement detector (DCMD), respond robustly to images that emulate an approaching two-dimensional object and exhibit firing rate modulation correlated with changes in object trajectory. It is not known how this pathway responds to visual expansion of a three-dimensional object or an approaching object that changes velocity, both of which represent natural stimuli. We compared DCMD responses with images that emulate the approach of a sphere with those elicited by a two-dimensional disc. A sphere evoked later peak firing and decreased sensitivity to the ratio of the half size of the object to the approach velocity, resulting in an increased threshold subtense angle required to generate peak firing. We also presented locusts with an approaching sphere that decreased or increased in velocity. A velocity decrease resulted in transition-associated peak firing followed by a firing rate increase that resembled the response to a constant, slower velocity. A velocity increase resulted in an earlier increase in the firing rate that was more pronounced with an earlier transition. These results further demonstrate that this pathway can provide motor circuits for behaviour with salient information about complex stimulus dynamics.


Asunto(s)
Interneuronas/fisiología , Locusta migratoria/fisiología , Percepción de Movimiento/fisiología , Animales , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...