Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
JAMA Netw Open ; 7(4): e248255, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38656577

Importance: Studies of influenza in children commonly rely on coded diagnoses, yet the ability of International Classification of Diseases, Ninth Revision codes to identify influenza in the emergency department (ED) and hospital is highly variable. The accuracy of newer International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) codes to identify influenza in children is unknown. Objective: To determine the accuracy of ICD-10 influenza discharge diagnosis codes in the pediatric ED and inpatient settings. Design, Setting, and Participants: Children younger than 18 years presenting to the ED or inpatient settings with fever and/or respiratory symptoms at 7 US pediatric medical centers affiliated with the Centers for Disease Control and Prevention-sponsored New Vaccine Surveillance Network from December 1, 2016, to March 31, 2020, were included in this cohort study. Nasal and/or throat swabs were collected for research molecular testing for influenza, regardless of clinical testing. Data, including ICD-10 discharge diagnoses and clinical testing for influenza, were obtained through medical record review. Data analysis was performed in August 2023. Main Outcomes and Measures: The accuracy of ICD-10-coded discharge diagnoses was characterized using molecular clinical or research laboratory test results as reference. Measures included sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Estimates were stratified by setting (ED vs inpatient) and age (0-1, 2-4, and 5-17 years). Results: A total of 16 867 children in the ED (median [IQR] age, 2.0 [0.0-4.0] years; 9304 boys [55.2%]) and 17 060 inpatients (median [IQR] age, 1.0 [0.0-4.0] years; 9798 boys [57.4%]) were included. In the ED, ICD-10 influenza diagnoses were highly specific (98.0%; 95% CI, 97.8%-98.3%), with high PPV (88.6%; 95% CI, 88.0%-89.2%) and high NPV (85.9%; 95% CI, 85.3%-86.6%), but sensitivity was lower (48.6%; 95% CI, 47.6%-49.5%). Among inpatients, specificity was 98.2% (95% CI, 98.0%-98.5%), PPV was 82.8% (95% CI, 82.1%-83.5%), sensitivity was 70.7% (95% CI, 69.8%-71.5%), and NPV was 96.5% (95% CI, 96.2%-96.9%). Accuracy of ICD-10 diagnoses varied by patient age, influenza season definition, time between disease onset and testing, and clinical setting. Conclusions and Relevance: In this large cohort study, influenza ICD-10 discharge diagnoses were highly specific but moderately sensitive in identifying laboratory-confirmed influenza; the accuracy of influenza diagnoses varied by clinical and epidemiological factors. In the ED and inpatient settings, an ICD-10 diagnosis likely represents a true-positive influenza case.


Influenza, Human , International Classification of Diseases , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Child , Child, Preschool , Male , Female , Infant , Adolescent , United States/epidemiology , Emergency Service, Hospital/statistics & numerical data , Sensitivity and Specificity , Cohort Studies
2.
MMWR Morb Mortal Wkly Rep ; 73(8): 168-174, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38421935

In the United States, annual influenza vaccination is recommended for all persons aged ≥6 months. Using data from four vaccine effectiveness (VE) networks during the 2023-24 influenza season, interim influenza VE was estimated among patients aged ≥6 months with acute respiratory illness-associated medical encounters using a test-negative case-control study design. Among children and adolescents aged 6 months-17 years, VE against influenza-associated outpatient visits ranged from 59% to 67% and against influenza-associated hospitalization ranged from 52% to 61%. Among adults aged ≥18 years, VE against influenza-associated outpatient visits ranged from 33% to 49% and against hospitalization from 41% to 44%. VE against influenza A ranged from 46% to 59% for children and adolescents and from 27% to 46% for adults across settings. VE against influenza B ranged from 64% to 89% for pediatric patients in outpatient settings and from 60% to 78% for all adults across settings. These findings demonstrate that the 2023-24 seasonal influenza vaccine is effective at reducing the risk for medically attended influenza virus infection. CDC recommends that all persons aged ≥6 months who have not yet been vaccinated this season get vaccinated while influenza circulates locally.


Influenza Vaccines , Influenza, Human , Adolescent , Adult , Humans , Child , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Case-Control Studies , Vaccine Efficacy
3.
JAMA Pediatr ; 178(2): 176-184, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38109102

Importance: Influenza virus infection during pregnancy is associated with severe maternal disease and may be associated with adverse birth outcomes. Inactivated influenza vaccine during pregnancy is safe and effective and can protect young infants, but recent evidence, particularly after the 2009 novel influenza A (H1N1) pandemic, is limited. Objective: To evaluate the effectiveness of influenza vaccination during pregnancy against laboratory-confirmed influenza-associated hospitalizations and emergency department (ED) visits in infants younger than 6 months. Design, Setting, and Participants: This was a prospective, test-negative case-control study using data from the New Vaccine Surveillance Network from the 2016 to 2017 through 2019 to 2020 influenza seasons. Infants younger than 6 months with an ED visit or hospitalization for acute respiratory illness were included from 7 pediatric medical institutions in US cities. Control infants with an influenza-negative molecular test were included for comparison. Data were analyzed from June 2022 to September 2023. Exposure: Maternal influenza vaccination during pregnancy. Main Outcomes and Measures: We estimated maternal vaccine effectiveness against hospitalizations or ED visits in infants younger than 6 months, those younger than 3 months, and by trimester of vaccination. Maternal vaccination status was determined using immunization information systems, medical records, or self-report. Vaccine effectiveness was estimated by comparing the odds of maternal influenza vaccination 14 days or more before delivery in infants with influenza vs those without. Results: Of 3764 infants (223 with influenza and 3541 control infants), 2007 (53%) were born to mothers who were vaccinated during pregnancy. Overall vaccine effectiveness in infants was 34% (95% CI, 12 to 50), 39% (95% CI, 12 to 58) against influenza-associated hospitalizations, and 19% (95% CI, -24 to 48) against ED visits. Among infants younger than 3 months, effectiveness was 53% (95% CI, 30 to 68). Effectiveness was 52% (95% CI, 30 to 68) among infants with mothers who were vaccinated during the third trimester and 17% (95% CI, -15 to 40) among those with mothers who were vaccinated during the first or second trimesters. Conclusions and Relevance: Maternal vaccination was associated with reduced odds of influenza-associated hospitalizations and ED visits in infants younger than 6 months. Effectiveness was greatest among infants younger than 3 months, for those born to mothers vaccinated during the third trimester, and against influenza-associated hospitalizations.


Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Infant , Pregnancy , Female , Humans , Child , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Influenza Vaccines/administration & dosage , Case-Control Studies , Prospective Studies , Influenza A Virus, H1N1 Subtype/immunology , Emergency Room Visits , Vaccine Efficacy , Hospitalization , Vaccination , Mothers , Emergency Service, Hospital
4.
Pediatr Crit Care Med ; 24(12): 998-1009, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37539964

OBJECTIVES: To develop, evaluate, and explore the use of a pediatric ordinal score as a potential clinical trial outcome metric in children hospitalized with acute hypoxic respiratory failure caused by viral respiratory infections. DESIGN: We modified the World Health Organization Clinical Progression Scale for pediatric patients (CPS-Ped) and assigned CPS-Ped at admission, days 2-4, 7, and 14. We identified predictors of clinical improvement (day 14 CPS-Ped ≤ 2 or a three-point decrease) using competing risks regression and compared clinical improvement to hospital length of stay (LOS) and ventilator-free days. We estimated sample sizes (80% power) to detect a 15% clinical improvement. SETTING: North American pediatric hospitals. PATIENTS: Three cohorts of pediatric patients with acute hypoxic respiratory failure receiving intensive care: two influenza (pediatric intensive care influenza [PICFLU], n = 263, 31 sites; PICFLU vaccine effectiveness [PICFLU-VE], n = 143, 17 sites) and one COVID-19 ( n = 237, 47 sites). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Invasive mechanical ventilation rates were 71.4%, 32.9%, and 37.1% for PICFLU, PICFLU-VE, and COVID-19 with less than 5% mortality for all three cohorts. Maximum CPS-Ped (0 = home at respiratory baseline to 8 = death) was positively associated with hospital LOS ( p < 0.001, all cohorts). Across the three cohorts, many patients' CPS-Ped worsened after admission (39%, 18%, and 49%), with some patients progressing to invasive mechanical ventilation or death (19%, 11%, and 17%). Despite this, greater than 76% of patients across cohorts clinically improved by day 14. Estimated sample sizes per group using CPS-Ped to detect a percentage increase in clinical improvement were feasible (influenza 15%, n = 142; 10%, n = 225; COVID-19, 15% n = 208) compared with mortality ( n > 21,000, all), and ventilator-free days (influenza 15%, n = 167). CONCLUSIONS: The CPS-Ped can be used to describe the time course of illness and threshold for clinical improvement in hospitalized children and adolescents with acute respiratory failure from viral infections. This outcome measure could feasibly be used in clinical trials to evaluate in-hospital recovery.


COVID-19 , Influenza, Human , Respiratory Distress Syndrome , Respiratory Insufficiency , Adolescent , Humans , Child , SARS-CoV-2 , Influenza, Human/complications , Influenza, Human/diagnosis , Influenza, Human/therapy , COVID-19/therapy , Respiration, Artificial , Outcome Assessment, Health Care , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Disease Progression
5.
J Allergy Clin Immunol Pract ; 11(3): 836-843.e3, 2023 03.
Article En | MEDLINE | ID: mdl-36379408

BACKGROUND: Hospitalization for severe influenza infection in childhood may result in postdischarge sequelae. OBJECTIVE: To evaluate inpatient management and postdischarge sequelae in children with critical respiratory illness owing to influenza with or without preexisting asthma. METHODS: This was a prospective, observational multicenter study of children (aged 8 months to 17 years) admitted to a pediatric intensive care or high-acuity unit (in November 2019 to April 2020) for influenza. Results were stratified by preexisting asthma. Prehospital status, hospital treatments, and outcomes were collected. Surveys at approximately 90 days after discharge evaluated postdischarge health resource use, functional status, and respiratory symptoms. RESULTS: A total of 165 children had influenza: 56 with preexisting asthma (33.9%) and 109 without it (66.1%; 41.1% and 39.4%, respectively, were fully vaccinated against influenza). Fifteen patients with preexisting asthma (26.7%) and 34 without it (31.1%) were intubated. More patients with versus without preexisting asthma received pharmacologic asthma treatments during hospitalization (76.7% vs 28.4%). Of 136 patients with 90-day survey data (82.4%; 46 with preexisting asthma [33.8%] and 90 without it [66.1%]), a similar proportion had an emergency department/urgent care visit (4.3% vs 6.6%) or hospital readmission (8.6% vs 3.3%) for a respiratory condition. Patients with preexisting asthma more frequently experienced asthma symptoms (78.2% vs 3.3%) and had respiratory specialist visits (52% vs 20%) after discharge. Of 109 patients without preexisting asthma, 10 reported receiving a new diagnosis of asthma (11.1%). CONCLUSIONS: Respiratory health resource use and symptoms are important postdischarge outcomes after influenza critical illness in children with and without preexisting asthma. Less than half of children were vaccinated for influenza, a tool that could mitigate critical illness and its sequelae.


Asthma , Influenza, Human , Child , Humans , Influenza, Human/epidemiology , Influenza, Human/diagnosis , Patient Discharge , Prospective Studies , Critical Illness , Aftercare , Hospitalization , Asthma/epidemiology , Asthma/therapy , Disease Progression
6.
Clin Infect Dis ; 76(3): e1031-e1039, 2023 02 08.
Article En | MEDLINE | ID: mdl-35867698

BACKGROUND: Adult studies have demonstrated within-season declines in influenza vaccine effectiveness (VE); data in children are limited. METHODS: We conducted a prospective, test-negative study of children 6 months through 17 years hospitalized with acute respiratory illness at 7 pediatric medical centers during the 2015-2016 through 2019-2020 influenza seasons. Case-patients were children with an influenza-positive molecular test matched by illness onset to influenza-negative control-patients. We estimated VE [100% × (1 - odds ratio)] by comparing the odds of receipt of ≥1 dose of influenza vaccine ≥14 days before illness onset among influenza-positive children to influenza-negative children. Changes in VE over time between vaccination date and illness onset date were estimated using multivariable logistic regression. RESULTS: Of 8430 children, 4653 (55%) received ≥1 dose of influenza vaccine. On average, 48% were vaccinated through October and 85% through December each season. Influenza vaccine receipt was lower in case-patients than control-patients (39% vs 57%, P < .001); overall VE against hospitalization was 53% (95% confidence interval [CI]: 46, 60%). Pooling data across 5 seasons, the odds of influenza-associated hospitalization increased 4.2% (-3.2%, 12.2%) per month since vaccination, with an average VE decrease of 1.9% per month (n = 4000, P = .275). Odds of hospitalization increased 2.9% (95% CI: -5.4%, 11.8%) and 9.6% (95% CI: -7.0%, 29.1%) per month in children ≤8 years (n = 3084) and 9-17 years (n = 916), respectively. These findings were not statistically significant. CONCLUSIONS: We observed minimal, not statistically significant within-season declines in VE. Vaccination following current Advisory Committee on Immunization Practices (ACIP) guidelines for timing of vaccine receipt remains the best strategy for preventing influenza-associated hospitalizations in children.


Influenza Vaccines , Influenza, Human , Adult , Child , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Prospective Studies , Vaccine Efficacy , Case-Control Studies , Vaccination , Hospitalization , Influenza A Virus, H3N2 Subtype
7.
J Pediatric Infect Dis Soc ; 12(1): 29-35, 2023 Feb 09.
Article En | MEDLINE | ID: mdl-36309873

BACKGROUND: Pfizer-BioNTech COVID-19 vaccine received emergency use authorization for persons ≥ 16 years in December 2020 and for adolescents 12-15 years in May 2021. Despite the clear benefits and favorable safety profile, vaccine uptake in adolescents has been suboptimal. We sought to assess factors associated with COVID-19 non-vaccination in adolescents 12-18 years of age. METHODS: Between June 1, 2021 and April 29, 2022, we assessed factors associated with COVID-19 non-vaccination in hospitalized adolescents ages 12-18 years enrolled in the Overcoming COVID-19 vaccine effectiveness network. Demographic characteristics and clinical information were captured through parent interviews and/or electronic medical record abstraction; COVID-19 vaccination was assessed through documented sources. We assessed associations between receipt of the COVID-19 vaccine and demographic and clinical factors using univariate and multivariable logistic regression and estimated adjusted odds ratios (aOR) for each factor associated with non-vaccination. RESULTS: Among 1665 hospitalized adolescents without COVID-19, 56% were unvaccinated. Unvaccinated adolescents were younger (median age 15.1 years vs. 15.4 years, p < .01) and resided in areas with higher social vulnerability index (SVI) scores (median 0.6 vs 0.5, p < .001) than vaccinated adolescents. Residence in the Midwest [aOR 2.60 (95% CI: 1.80, 3.79)] or South [aOR 2.49 (95% CI: 1.77, 3.54)] US census regions, rarely or never receiving influenza vaccine [aOR 5.31 (95% CI: 3.81, 7.47)], and rarely or never taking precautions against COVID-19 [aOR 3.17 (95% CI: 1.94, 5.31)] were associated with non-vaccination against COVID-19. CONCLUSIONS: Efforts to increase COVID-19 vaccination of adolescents should focus on persons with geographic, socioeconomic, and medical risk factors associated with non-vaccination.


COVID-19 , Adolescent , Humans , Child , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , BNT162 Vaccine , Vaccination , Electronic Health Records
8.
Clin Infect Dis ; 76(3): e280-e290, 2023 02 08.
Article En | MEDLINE | ID: mdl-35717646

BACKGROUND: Clinical differences between critical illness from influenza infection vs coronavirus disease 2019 (COVID-19) have not been well characterized in pediatric patients. METHODS: We compared demographics, clinical characteristics, and outcomes of US children (aged 8 months to 17 years) admitted to the intensive care or high-acuity unit with influenza or COVID-19. Using mixed-effects models, we assessed the odds of death or requiring life support for influenza vs COVID-19 after adjustment for age, sex, race and Hispanic origin, and underlying conditions including obesity. RESULTS: Children with influenza (n = 179) were younger than those with COVID-19 (n = 381; median, 5.2 years vs 13.8 years), less likely to be non-Hispanic Black (14.5% vs 27.6%) or Hispanic (24.0% vs 36.2%), and less likely to have ≥1 underlying condition (66.4% vs 78.5%) or be obese (21.4% vs 42.2%), and a shorter hospital stay (median, 5 days vs 7 days). They were similarly likely to require invasive mechanical ventilation (both 30.2%), vasopressor support (19.6% and 19.9%), or extracorporeal membrane oxygenation (2.2% and 2.9%). Four children with influenza (2.2%) and 11 children with COVID-19 (2.9%) died. The odds of death or requiring life support in children with influenza vs COVID-19 were similar (adjusted odds ratio, 1.30; 95% confidence interval, .78-2.15; P = .32). CONCLUSIONS: Despite differences in demographics and clinical characteristics of children with influenza or COVID-19, the frequency of life-threatening complications was similar. Our findings highlight the importance of implementing prevention measures to reduce transmission and disease severity of influenza and COVID-19.


COVID-19 , Influenza, Human , Humans , Child , COVID-19/epidemiology , Influenza, Human/complications , Influenza, Human/epidemiology , SARS-CoV-2 , Hospitalization , Respiration, Artificial , Obesity , Retrospective Studies
9.
Clin Infect Dis ; 76(3): e90-e100, 2023 02 08.
Article En | MEDLINE | ID: mdl-35924406

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C), linked to antecedent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is associated with considerable morbidity. Prevention of SARS-CoV-2 infection or coronavirus disease 2019 (COVID-19) by vaccination might also decrease MIS-C likelihood. METHODS: In a multicenter, case-control, public health investigation of children ages 5-18 years hospitalized from 1 July 2021 to 7 April 2022, we compared the odds of being fully vaccinated (2 doses of BNT162b2 vaccine ≥28 days before hospital admission) between MIS-C case-patients and hospital-based controls who tested negative for SARS-CoV-2. These associations were examined by age group, timing of vaccination, and periods of Delta and Omicron variant predominance using multivariable logistic regression. RESULTS: We compared 304 MIS-C case-patients (280 [92%] unvaccinated) with 502 controls (346 [69%] unvaccinated). MIS-C was associated with decreased likelihood of vaccination (adjusted OR [aOR]: .16; 95% CI: .10-.26), including among children ages 5-11 years (aOR: .22; 95% CI: .10-.52), ages 12-18 years (aOR: .10; 95% CI: .05-.19), and during the Delta (aOR: .06; 95% CI: .02-.15) and Omicron (aOR: .22; 95% CI: .11-.42) variant-predominant periods. This association persisted beyond 120 days after the second dose (aOR: .08; 95% CI: .03-.22) in 12-18-year-olds. Among all MIS-C case-patients, 187 (62%) required intensive care unit admission and 280 (92%) vaccine-eligible case-patients were unvaccinated. CONCLUSIONS: Vaccination with 2 doses of BNT162b2 is associated with reduced likelihood of MIS-C in children ages 5-18 years. Most vaccine-eligible hospitalized patients with MIS-C were unvaccinated.


COVID-19 , Connective Tissue Diseases , Child , Humans , COVID-19/prevention & control , SARS-CoV-2 , BNT162 Vaccine , Vaccination , RNA, Messenger
10.
Birth Defects Res ; 114(14): 805-811, 2022 08 15.
Article En | MEDLINE | ID: mdl-35906998

During the Centers for Disease Control and Prevention's Zika Virus Response, birth defects surveillance programs adapted to monitor birth defects potentially related to Zika virus (ZIKV) infection during pregnancy. Pregnancy outcomes occurring during January 2016 to June 2017 in 22 U.S. states and territories were used to estimate the prevalence of those brain and eye defects potentially related to ZIKV. Jurisdictions were divided into three groups: areas with widespread ZIKV transmission, areas with limited local ZIKV transmission, and areas without local ZIKV transmission. Prevalence estimates for selected brain and eye defects and microcephaly per 10,000 live births were estimated. Prevalence ratios (PRs) and 95% confidence intervals (CIs) were estimated using Poisson regression for areas with widespread and limited ZIKV transmission compared with areas without local ZIKV transmission. Defects with significantly higher prevalence in areas of widespread transmission were pooled, and PRs were calculated by quarter, comparing subsequent quarters to the first quarter (January-March 2016). Nine defects had significantly higher prevalence in areas of widespread transmission. The highest PRs were seen in intracranial calcifications (PR = 12.6, 95% CI [7.4, 21.3]), chorioretinal abnormalities (12.5 [7.1, 22.3]), brainstem abnormalities (9.3 [4.7, 18.4]), and cerebral/cortical atrophy (6.7 [4.2, 10.8]). The PR of the nine pooled defects was significantly higher in three quarters in areas with widespread transmission. The largest difference in prevalence was observed for defects consistently reported in infants with congenital ZIKV infection. Birth defects surveillance programs could consider monitoring a subset of birth defects potentially related to ZIKV in pregnancy.


Congenital Abnormalities , Eye Abnormalities , Pregnancy Complications, Infectious , Zika Virus Infection , Zika Virus , Brain/abnormalities , Brain/virology , Congenital Abnormalities/epidemiology , Congenital Abnormalities/virology , Eye Abnormalities/epidemiology , Eye Abnormalities/virology , Female , Humans , Infant , Microcephaly , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Prevalence , Zika Virus Infection/complications , Zika Virus Infection/congenital , Zika Virus Infection/epidemiology
11.
Influenza Other Respir Viruses ; 16(6): 1101-1111, 2022 11.
Article En | MEDLINE | ID: mdl-35818721

BACKGROUND: During the COVID-19 pandemic, self-reported COVID-19 vaccination might facilitate rapid evaluations of vaccine effectiveness (VE) when source documentation (e.g., immunization information systems [IIS]) is not readily available. We evaluated the concordance of COVID-19 vaccination status ascertained by self-report versus source documentation and its impact on VE estimates. METHODS: Hospitalized adults (≥18 years) admitted to 18 U.S. medical centers March-June 2021 were enrolled, including COVID-19 cases and SARS-CoV-2 negative controls. Patients were interviewed about COVID-19 vaccination. Abstractors simultaneously searched IIS, medical records, and other sources for vaccination information. To compare vaccination status by self-report and documentation, we estimated percent agreement and unweighted kappa with 95% confidence intervals (CIs). We then calculated VE in preventing COVID-19 hospitalization of full vaccination (2 doses of mRNA product ≥14 days prior to illness onset) independently using data from self-report or source documentation. RESULTS: Of 2520 patients, 594 (24%) did not have self-reported vaccination information to assign vaccination group; these patients tended to be more severely ill. Among 1924 patients with both self-report and source documentation information, 95.0% (95% CI: 93.9-95.9%) agreement was observed, with a kappa of 0.9127 (95% CI: 0.9109-0.9145). VE was 86% (95% CI: 81-90%) by self-report data only and 85% (95% CI: 81-89%) by source documentation data only. CONCLUSIONS: Approximately one-quarter of hospitalized patients could not provide self-report COVID-19 vaccination status. Among patients with self-report information, there was high concordance with source documented status. Self-report may be a reasonable source of COVID-19 vaccination information for timely VE assessment for public health action.


COVID-19 Vaccines , COVID-19 , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Documentation , Humans , Pandemics , RNA, Messenger , SARS-CoV-2 , Self Report , Vaccination , Vaccine Efficacy
12.
N Engl J Med ; 387(2): 109-119, 2022 07 14.
Article En | MEDLINE | ID: mdl-35731908

BACKGROUND: Infants younger than 6 months of age are at high risk for complications of coronavirus disease 2019 (Covid-19) and are not eligible for vaccination. Transplacental transfer of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after maternal Covid-19 vaccination may confer protection against Covid-19 in infants. METHODS: We used a case-control test-negative design to assess the effectiveness of maternal vaccination during pregnancy against hospitalization for Covid-19 among infants younger than 6 months of age. Between July 1, 2021, and March 8, 2022, we enrolled infants hospitalized for Covid-19 (case infants) and infants hospitalized without Covid-19 (control infants) at 30 hospitals in 22 states. We estimated vaccine effectiveness by comparing the odds of full maternal vaccination (two doses of mRNA vaccine) among case infants and control infants during circulation of the B.1.617.2 (delta) variant (July 1, 2021, to December 18, 2021) and the B.1.1.259 (omicron) variant (December 19, 2021, to March 8, 2022). RESULTS: A total of 537 case infants (181 of whom had been admitted to a hospital during the delta period and 356 during the omicron period; median age, 2 months) and 512 control infants were enrolled and included in the analyses; 16% of the case infants and 29% of the control infants had been born to mothers who had been fully vaccinated against Covid-19 during pregnancy. Among the case infants, 113 (21%) received intensive care (64 [12%] received mechanical ventilation or vasoactive infusions). Two case infants died from Covid-19; neither infant's mother had been vaccinated during pregnancy. The effectiveness of maternal vaccination against hospitalization for Covid-19 among infants was 52% (95% confidence interval [CI], 33 to 65) overall, 80% (95% CI, 60 to 90) during the delta period, and 38% (95% CI, 8 to 58) during the omicron period. Effectiveness was 69% (95% CI, 50 to 80) when maternal vaccination occurred after 20 weeks of pregnancy and 38% (95% CI, 3 to 60) during the first 20 weeks of pregnancy. CONCLUSIONS: Maternal vaccination with two doses of mRNA vaccine was associated with a reduced risk of hospitalization for Covid-19, including for critical illness, among infants younger than 6 months of age. (Funded by the Centers for Disease Control and Prevention.).


COVID-19 Vaccines , COVID-19 , Hospitalization , Pregnancy Complications, Infectious , mRNA Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/therapeutic use , Female , Hospitalization/statistics & numerical data , Humans , Infant , Mothers , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/prevention & control , SARS-CoV-2 , Vaccination/statistics & numerical data , Vaccines, Synthetic , mRNA Vaccines/adverse effects , mRNA Vaccines/therapeutic use
14.
J Infect Dis ; 226(5): 797-807, 2022 09 13.
Article En | MEDLINE | ID: mdl-35385875

BACKGROUND: The study objective was to evaluate 2- and 3-dose coronavirus disease 2019 (COVID-19) mRNA vaccine effectiveness (VE) in preventing COVID-19 hospitalization among adult solid organ transplant (SOT) recipients. METHODS: We conducted a 21-site case-control analysis of 10 425 adults hospitalized in March to December 2021. Cases were hospitalized with COVID-19; controls were hospitalized for an alternative diagnosis (severe acute respiratory syndrome coronavirus 2-negative). Participants were classified as follows: SOT recipient (n = 440), other immunocompromising condition (n = 1684), or immunocompetent (n = 8301). The VE against COVID-19-associated hospitalization was calculated as 1-adjusted odds ratio of prior vaccination among cases compared with controls. RESULTS: Among SOT recipients, VE was 29% (95% confidence interval [CI], -19% to 58%) for 2 doses and 77% (95% CI, 48% to 90%) for 3 doses. Among patients with other immunocompromising conditions, VE was 72% (95% CI, 64% to 79%) for 2 doses and 92% (95% CI, 85% to 95%) for 3 doses. Among immunocompetent patients, VE was 88% (95% CI, 87% to 90%) for 2 doses and 96% (95% CI, 83% to 99%) for 3 doses. CONCLUSIONS: Effectiveness of COVID-19 mRNA vaccines was lower for SOT recipients than immunocompetent adults and those with other immunocompromising conditions. Among SOT recipients, vaccination with 3 doses of an mRNA vaccine led to substantially greater protection than 2 doses.


COVID-19 , Organ Transplantation , Adult , COVID-19/prevention & control , Hospitalization , Humans , Organ Transplantation/adverse effects , RNA, Messenger , Transplant Recipients , Vaccines, Synthetic , mRNA Vaccines
15.
N Engl J Med ; 386(20): 1899-1909, 2022 05 19.
Article En | MEDLINE | ID: mdl-35353976

BACKGROUND: Spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.529 (omicron) variant, which led to increased U.S. hospitalizations for coronavirus disease 2019 (Covid-19), generated concern about immune evasion and the duration of protection from vaccines in children and adolescents. METHODS: Using a case-control, test-negative design, we assessed vaccine effectiveness against laboratory-confirmed Covid-19 leading to hospitalization and against critical Covid-19 (i.e., leading to receipt of life support or to death). From July 1, 2021, to February 17, 2022, we enrolled case patients with Covid-19 and controls without Covid-19 at 31 hospitals in 23 states. We estimated vaccine effectiveness by comparing the odds of antecedent full vaccination (two doses of BNT162b2 messenger RNA vaccine) at least 14 days before illness among case patients and controls, according to time since vaccination for patients 12 to 18 years of age and in periods coinciding with circulation of B.1.617.2 (delta) (July 1, 2021, to December 18, 2021) and omicron (December 19, 2021, to February 17, 2022) among patients 5 to 11 and 12 to 18 years of age. RESULTS: We enrolled 1185 case patients (1043 [88%] of whom were unvaccinated, 291 [25%] of whom received life support, and 14 of whom died) and 1627 controls. During the delta-predominant period, vaccine effectiveness against hospitalization for Covid-19 among adolescents 12 to 18 years of age was 93% (95% confidence interval [CI], 89 to 95) 2 to 22 weeks after vaccination and was 92% (95% CI, 80 to 97) at 23 to 44 weeks. Among adolescents 12 to 18 years of age (median interval since vaccination, 162 days) during the omicron-predominant period, vaccine effectiveness was 40% (95% CI, 9 to 60) against hospitalization for Covid-19, 79% (95% CI, 51 to 91) against critical Covid-19, and 20% (95% CI, -25 to 49) against noncritical Covid-19. During the omicron period, vaccine effectiveness against hospitalization among children 5 to 11 years of age was 68% (95% CI, 42 to 82; median interval since vaccination, 34 days). CONCLUSIONS: BNT162b2 vaccination reduced the risk of omicron-associated hospitalization by two thirds among children 5 to 11 years of age. Although two doses provided lower protection against omicron-associated hospitalization than against delta-associated hospitalization among adolescents 12 to 18 years of age, vaccination prevented critical illness caused by either variant. (Funded by the Centers for Disease Control and Prevention.).


BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Adolescent , BNT162 Vaccine/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Case-Control Studies , Child , Child, Preschool , Critical Illness/therapy , Hospitalization , Humans , Vaccine Efficacy , Vaccines, Synthetic/therapeutic use , mRNA Vaccines/therapeutic use
16.
Birth Defects Res ; 114(8): 314-318, 2022 05.
Article En | MEDLINE | ID: mdl-35332688

BACKGROUND: The US Zika Pregnancy and Infant Registry (USZPIR) monitors infants born to mothers with confirmed or possible Zika virus infection during pregnancy. The surveillance case definition for Zika-associated birth defects includes microcephaly based on head circumference (HC). METHODS: We assessed birth and follow-up data from infants with birth HC measurements <3rd percentile and birthweight ≥10th percentile to determine possible misclassification of microcephaly. We developed a schema informed by literature review and expert opinion to identify possible HC measurement inaccuracy using HC growth velocity and longitudinal HC measurements between 2 and 12 months of age. Two or more HC measurements were required for assessment. Inaccuracy in birth HC measurement was suspected if growth velocity was >3 cm/month in the first 3 months or HC was consistently >25th percentile during follow-up. RESULTS: Of 6,799 liveborn infants in USZPIR, 351 (5.2%) had Zika-associated birth defects, of which 111 had birth HC measurements <3rd percentile and birthweight ≥10th percentile. Of 84/111 infants with sufficient follow-up, 38/84 (45%) were classified as having possible inaccuracy of birth HC measurement, 19/84 (23%) had HC ≥3rd percentile on follow-up without meeting criteria for possible inaccuracy, and 27/84 (32%) had continued HC <3rd percentile. After excluding possible inaccuracies, the proportion of infants with Zika-associated birth defects including microcephaly decreased from 5.2% to 4.6%. CONCLUSIONS: About one-third of infants in USZPIR with Zika-associated birth defects had only microcephaly, but indications of possible measurement inaccuracy were common. Implementation of this schema in longitudinal studies can reduce misclassification of microcephaly.


Microcephaly , Pregnancy Complications, Infectious , Zika Virus Infection , Zika Virus , Birth Weight , Female , Humans , Infant , Male , Microcephaly/diagnosis , Microcephaly/epidemiology , Microcephaly/etiology , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/epidemiology , Registries , Zika Virus Infection/complications , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology
17.
MMWR Morb Mortal Wkly Rep ; 71(7): 264-270, 2022 Feb 18.
Article En | MEDLINE | ID: mdl-35176002

COVID-19 vaccination is recommended for persons who are pregnant, breastfeeding, trying to get pregnant now, or who might become pregnant in the future, to protect them from COVID-19.§ Infants are at risk for life-threatening complications from COVID-19, including acute respiratory failure (1). Evidence from other vaccine-preventable diseases suggests that maternal immunization can provide protection to infants, especially during the high-risk first 6 months of life, through passive transplacental antibody transfer (2). Recent studies of COVID-19 vaccination during pregnancy suggest the possibility of transplacental transfer of SARS-CoV-2-specific antibodies that might provide protection to infants (3-5); however, no epidemiologic evidence currently exists for the protective benefits of maternal immunization during pregnancy against COVID-19 in infants. The Overcoming COVID-19 network conducted a test-negative, case-control study at 20 pediatric hospitals in 17 states during July 1, 2021-January 17, 2022, to assess effectiveness of maternal completion of a 2-dose primary mRNA COVID-19 vaccination series during pregnancy against COVID-19 hospitalization in infants. Among 379 hospitalized infants aged <6 months (176 with COVID-19 [case-infants] and 203 without COVID-19 [control-infants]), the median age was 2 months, 21% had at least one underlying medical condition, and 22% of case- and control-infants were born premature (<37 weeks gestation). Effectiveness of maternal vaccination during pregnancy against COVID-19 hospitalization in infants aged <6 months was 61% (95% CI = 31%-78%). Completion of a 2-dose mRNA COVID-19 vaccination series during pregnancy might help prevent COVID-19 hospitalization among infants aged <6 months.


COVID-19 Vaccines/immunology , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Immunity, Maternally-Acquired , SARS-CoV-2/immunology , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology , Case-Control Studies , Female , Hospitals, Pediatric , Humans , Immunization, Passive , Infant , Infant, Newborn , Pregnancy , United States/epidemiology
18.
Clin Infect Dis ; 75(2): 230-238, 2022 08 25.
Article En | MEDLINE | ID: mdl-35024795

BACKGROUND: Predominance of 2 antigenically drifted influenza viruses during the 2019-2020 season offered an opportunity to assess vaccine effectiveness against life-threatening pediatric influenza disease from vaccine-mismatched viruses in the United States. METHODS: We enrolled children aged <18 years admitted to the intensive care unit with acute respiratory infection across 17 hospitals. Respiratory specimens were tested using reverse-transcription polymerase chain reaction for influenza viruses and sequenced. Using a test-negative design, we estimated vaccine effectiveness comparing odds of vaccination in test-positive case patients vs test-negative controls, stratifying by age, virus type, and severity. Life-threating influenza included death or invasive mechanical ventilation, vasopressors, cardiopulmonary resuscitation, dialysis, or extracorporeal membrane oxygenation. RESULTS: We enrolled 159 critically ill influenza case-patients (70% ≤8 years; 51% A/H1N1pdm09 and 25% B-Victoria viruses) and 132 controls (69% were aged ≤8 years). Among 56 sequenced A/H1N1pdm09 viruses, 29 (52%) were vaccine-mismatched (A/H1N1pdm09/5A+156K) and 23 (41%) were vaccine-matched (A/H1N1pdm09/5A+187A,189E). Among sequenced B-lineage viruses, majority (30 of 31) were vaccine-mismatched. Effectiveness against critical influenza was 63% (95% confidence interval [CI], 38% to 78%) and similar by age. Effectiveness was 75% (95% CI, 49% to 88%) against life-threatening influenza vs 57% (95% CI, 24% to 76%) against non-life-threating influenza. Effectiveness was 78% (95% CI, 41% to 92%) against matched A(H1N1)pdm09 viruses, 47% (95% CI, -21% to 77%) against mismatched A(H1N1)pdm09 viruses, and 75% (95% CI, 37% to 90%) against mismatched B-Victoria viruses. CONCLUSIONS: During a season when vaccine-mismatched influenza viruses predominated, vaccination was associated with a reduced risk of critical and life-threatening influenza illness in children.


Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Case-Control Studies , Child , Humans , Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , United States/epidemiology , Vaccination , Vaccine Efficacy
19.
MMWR Morb Mortal Wkly Rep ; 71(2): 52-58, 2022 Jan 14.
Article En | MEDLINE | ID: mdl-35025852

Multisystem inflammatory syndrome in children (MIS-C) is a severe postinfectious hyperinflammatory condition, which generally occurs 2-6 weeks after a typically mild or asymptomatic infection with SARS-CoV-2, the virus that causes COVID-19 (1-3). In the United States, the BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine is currently authorized for use in children and adolescents aged 5-15 years under an Emergency Use Authorization and is fully licensed by the Food and Drug Administration for persons aged ≥16 years (4). Prelicensure randomized trials in persons aged ≥5 years documented high vaccine efficacy and immunogenicity (5),§ and real-world studies in persons aged 12-18 years demonstrated high vaccine effectiveness (VE) against severe COVID-19 (6). Recent evidence suggests that COVID-19 vaccination is associated with lower MIS-C incidence among adolescents (7); however, VE of the 2-dose Pfizer-BioNTech regimen against MIS-C has not been evaluated. The effectiveness of 2 doses of Pfizer-BioNTech vaccine received ≥28 days before hospital admission in preventing MIS-C was assessed using a test-negative case-control design¶ among hospitalized patients aged 12-18 years at 24 pediatric hospitals in 20 states** during July 1-December 9, 2021, the period when most MIS-C patients could be temporally linked to SARS-CoV-2 B.1.617.2 (Delta) variant predominance. Patients with MIS-C (case-patients) and two groups of hospitalized controls matched to case-patients were evaluated: test-negative controls had at least one COVID-19-like symptom and negative SARS-CoV-2 reverse transcription-polymerase chain reaction (RT-PCR) or antigen-based assay results, and syndrome-negative controls were hospitalized patients without COVID-19-like illness. Among 102 MIS-C case-patients and 181 hospitalized controls, estimated effectiveness of 2 doses of Pfizer-BioNTech vaccine against MIS-C was 91% (95% CI = 78%-97%). All 38 MIS-C patients requiring life support were unvaccinated. Receipt of 2 doses of the Pfizer-BioNTech vaccine is associated with a high level of protection against MIS-C in persons aged 12-18 years, highlighting the importance of vaccination among all eligible children.


BNT162 Vaccine/therapeutic use , COVID-19/complications , Systemic Inflammatory Response Syndrome/drug therapy , Vaccine Efficacy , Adolescent , Case-Control Studies , Child , Female , Hospitalization/statistics & numerical data , Humans , Male , Patient Acuity , SARS-CoV-2/immunology , United States/epidemiology , COVID-19 Drug Treatment
20.
N Engl J Med ; 386(8): 713-723, 2022 02 24.
Article En | MEDLINE | ID: mdl-35021004

BACKGROUND: The increasing incidence of pediatric hospitalizations associated with coronavirus disease 2019 (Covid-19) caused by the B.1.617.2 (delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the United States has offered an opportunity to assess the real-world effectiveness of the BNT162b2 messenger RNA vaccine in adolescents between 12 and 18 years of age. METHODS: We used a case-control, test-negative design to assess vaccine effectiveness against Covid-19 resulting in hospitalization, admission to an intensive care unit (ICU), the use of life-supporting interventions (mechanical ventilation, vasopressors, and extracorporeal membrane oxygenation), or death. Between July 1 and October 25, 2021, we screened admission logs for eligible case patients with laboratory-confirmed Covid-19 at 31 hospitals in 23 states. We estimated vaccine effectiveness by comparing the odds of antecedent full vaccination (two doses of BNT162b2) in case patients as compared with two hospital-based control groups: patients who had Covid-19-like symptoms but negative results on testing for SARS-CoV-2 (test-negative) and patients who did not have Covid-19-like symptoms (syndrome-negative). RESULTS: A total of 445 case patients and 777 controls were enrolled. Overall, 17 case patients (4%) and 282 controls (36%) had been fully vaccinated. Of the case patients, 180 (40%) were admitted to the ICU, and 127 (29%) required life support; only 2 patients in the ICU had been fully vaccinated. The overall effectiveness of the BNT162b2 vaccine against hospitalization for Covid-19 was 94% (95% confidence interval [CI], 90 to 96); the effectiveness was 95% (95% CI, 91 to 97) among test-negative controls and 94% (95% CI, 89 to 96) among syndrome-negative controls. The effectiveness was 98% against ICU admission and 98% against Covid-19 resulting in the receipt of life support. All 7 deaths occurred in patients who were unvaccinated. CONCLUSIONS: Among hospitalized adolescent patients, two doses of the BNT162b2 vaccine were highly effective against Covid-19-related hospitalization and ICU admission or the receipt of life support. (Funded by the Centers for Disease Control and Prevention.).


BNT162 Vaccine , COVID-19/prevention & control , Vaccine Efficacy , Adolescent , COVID-19/mortality , COVID-19/therapy , COVID-19 Testing , COVID-19 Vaccines , Case-Control Studies , Child , Female , Hospitalization/statistics & numerical data , Humans , Immunization, Secondary , Intensive Care Units , Life Support Care , Male , Patient Acuity , SARS-CoV-2 , United States
...