Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Immunol ; 203(7): 1820-1829, 2019 10 01.
Article En | MEDLINE | ID: mdl-31451676

The clear role of autophagy in human inflammatory diseases such as Crohn disease was first identified by genome-wide association studies and subsequently dissected in multiple mechanistic studies. ATG16L1 has been particularly well studied in knockout and hypomorph settings as well as models recapitulating the Crohn disease-associated T300A polymorphism. Interestingly, ATG16L1 has a single homolog, ATG16L2, which is independently implicated in diseases, including Crohn disease and systemic lupus erythematosus. However, the contribution of ATG16L2 to canonical autophagy pathways and other cellular functions is poorly understood. To better understand its role, we generated and analyzed the first, to our knowledge, ATG16L2 knockout mouse. Our results show that ATG16L1 and ATG16L2 contribute very distinctly to autophagy and cellular ontogeny in myeloid, lymphoid, and epithelial lineages. Dysregulation of any of these lineages could contribute to complex diseases like Crohn disease and systemic lupus erythematosus, highlighting the value of examining cell-specific effects. We also identify a novel genetic interaction between ATG16L2 and epithelial ATG16L1. These findings are discussed in the context of how these genes may contribute distinctly to human disease.


Autophagic Cell Death , Autophagy-Related Proteins , Carrier Proteins , Crohn Disease , Lupus Erythematosus, Systemic , Animals , Autophagic Cell Death/genetics , Autophagic Cell Death/immunology , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/immunology , Carrier Proteins/genetics , Carrier Proteins/immunology , Crohn Disease/genetics , Crohn Disease/immunology , Disease Models, Animal , Humans , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Mice , Mice, Knockout , Organ Specificity/genetics , Organ Specificity/immunology
2.
Cell Host Microbe ; 22(1): 25-37.e6, 2017 Jul 12.
Article En | MEDLINE | ID: mdl-28704649

Host factors in the intestine help select for bacteria that promote health. Certain commensals can utilize mucins as an energy source, thus promoting their colonization. However, health conditions such as inflammatory bowel disease (IBD) are associated with a reduced mucus layer, potentially leading to dysbiosis associated with this disease. We characterize the capability of commensal species to cleave and transport mucin-associated monosaccharides and identify several Clostridiales members that utilize intestinal mucins. One such mucin utilizer, Peptostreptococcus russellii, reduces susceptibility to epithelial injury in mice. Several Peptostreptococcus species contain a gene cluster enabling production of the tryptophan metabolite indoleacrylic acid (IA), which promotes intestinal epithelial barrier function and mitigates inflammatory responses. Furthermore, metagenomic analysis of human stool samples reveals that the genetic capability of microbes to utilize mucins and metabolize tryptophan is diminished in IBD patients. Our data suggest that stimulating IA production could promote anti-inflammatory responses and have therapeutic benefits.


Indoles/metabolism , Indoles/pharmacology , Inflammation/metabolism , Intestinal Mucosa/microbiology , Peptostreptococcus/metabolism , Symbiosis , Animals , Anti-Inflammatory Agents/pharmacology , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteroides/genetics , Bacteroides/metabolism , Clostridiales/genetics , Clostridiales/metabolism , Colon/microbiology , Colon/pathology , Cytokines/metabolism , Dysbiosis/metabolism , Humans , Inflammatory Bowel Diseases , Intestinal Mucosa/injuries , Intestinal Mucosa/metabolism , Intestines/microbiology , Mice , Mucin-2/genetics , Mucin-2/metabolism , Mucins/genetics , Mucins/metabolism , Organoids
...