Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Genet ; 14: 1282673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38028598

RESUMEN

Among the diseases threatening maize production in Africa are gray leaf spot (GLS) caused by Cercospora zeina and northern corn leaf blight (NCLB) caused by Exserohilum turcicum. The two pathogens, which have high genetic diversity, reduce the photosynthesizing ability of susceptible genotypes and, hence, reduce the grain yield. To identify population-based quantitative trait loci (QTLs) for GLS and NCLB resistance, a biparental population of 230 lines derived from the tropical maize parents CML511 and CML546 and an association mapping panel of 239 tropical and sub-tropical inbred lines were phenotyped across multi-environments in western Kenya. Based on 1,264 high-quality polymorphic single-nucleotide polymorphisms (SNPs) in the biparental population, we identified 10 and 18 QTLs, which explained 64.2% and 64.9% of the total phenotypic variance for GLS and NCLB resistance, respectively. A major QTL for GLS, qGLS1_186 accounted for 15.2% of the phenotypic variance, while qNCLB3_50 explained the most phenotypic variance at 8.8% for NCLB resistance. Association mapping with 230,743 markers revealed 11 and 16 SNPs significantly associated with GLS and NCLB resistance, respectively. Several of the SNPs detected in the association panel were co-localized with QTLs identified in the biparental population, suggesting some consistent genomic regions across genetic backgrounds. These would be more relevant to use in field breeding to improve resistance to both diseases. Genomic prediction models trained on the biparental population data yielded average prediction accuracies of 0.66-0.75 for the disease traits when validated in the same population. Applying these prediction models to the association panel produced accuracies of 0.49 and 0.75 for GLS and NCLB, respectively. This research conducted in maize fields relevant to farmers in western Kenya has combined linkage and association mapping to identify new QTLs and confirm previous QTLs for GLS and NCLB resistance. Overall, our findings imply that genetic gain can be improved in maize breeding for resistance to multiple diseases including GLS and NCLB by using genomic selection.

2.
Fungal Genet Biol ; 149: 103527, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33524555

RESUMEN

Cercospora zeina is a causal pathogen of gray leaf spot (GLS) disease of maize in Africa. This fungal pathogen exhibits a high genetic diversity in South Africa. However, little is known about the pathogen's population structure in the rest of Africa. In this study, we aimed to assess the diversity and gene flow of the pathogen between major maize producing countries in East and Southern Africa (Kenya, Uganda, Zambia, Zimbabwe, and South Africa). A total of 964 single-spore isolates were made from GLS lesions and confirmed as C.zeina using PCR diagnostics. The other causal agent of GLS, Cercospora zeae-maydis, was absent. Genotyping all the C.zeina isolates with 11 microsatellite markers and a mating-type gene diagnostic revealed (i) high genetic diversity with some population structure between the five African countries, (ii) cryptic sexual recombination, (iii) that South Africa and Kenya were the greatest donors of migrants, and (iv) that Zambia had a distinct population. We noted evidence of human-mediated long-distance dispersal, since four haplotypes from one South African site were also present at five sites in Kenya and Uganda. There was no evidence for a single-entry point of the pathogen into Africa. South Africa was the most probable origin of the populations in Kenya, Uganda, and Zimbabwe. Continuous annual maize production in the tropics (Kenya and Uganda) did not result in greater genetic diversity than a single maize season (Southern Africa). Our results will underpin future management of GLS in Africa through effective monitoring of virulent C.zeina strains.


Asunto(s)
Cercospora/genética , Cercospora/patogenicidad , Zea mays/microbiología , África Oriental , Ascomicetos/genética , Resistencia a la Enfermedad/genética , Flujo Génico/genética , Variación Genética/genética , Genética de Población/métodos , Haplotipos/genética , Repeticiones de Microsatélite/genética , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo/genética , Sudáfrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...