Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Virol J ; 21(1): 93, 2024 04 24.
Article En | MEDLINE | ID: mdl-38658979

African swine fever virus (ASFV) is a highly contagious and fatal hemorrhagic disease of domestic pigs, which poses a major threat to the swine industry worldwide. Studies have shown that indigenous African pigs tolerate ASFV infection better than European pigs. The porcine v-rel avian reticuloendotheliosis viral oncogene homolog A (RelA) encoding a p65 kD protein, a major subunit of the NF-kB transcription factor, plays important roles in controlling both innate and adaptive immunity during infection with ASFV. In the present study, RelA genes from ASFV-surviving and symptomatic pigs were sequenced and found to contain polymorphisms revealing two discrete RelA amino acid sequences. One was found in the surviving pigs, and the other in symptomatic pigs. In total, 16 nonsynonymous SNPs (nsSNPs) resulting in codon changes were identified using bioinformatics software (SIFT and Polyphen v2) and web-based tools (MutPre and PredictSNP). Seven nsSNPs (P374-S, T448-S, P462-R, V464-P, Q478-H, L495-E, and P499-Q) were predicted to alter RelA protein function and stability, while 5 of these (P374-S, T448-S, P462-R, L495-E, and Q499-P) were predicted as disease-related SNPs.Additionally, the inflammatory cytokine levels of IFN-α, IL-10, and TNF-α at both the protein and the mRNA transcript levels were measured using ELISA and Real-Time PCR, respectively. The resulting data was used in correlation analysis to assess the association between cytokine levels and the RelA gene expression. Higher levels of IFN-α and detectable levels of IL-10 protein and RelA mRNA were observed in surviving pigs compared to healthy (non-infected). A positive correlation of IFN-α cytokine levels with RelA mRNA expression was also obtained. In conclusion, 7 polymorphic events in the coding region of the RelA gene may contribute to the tolerance of ASFV in pigs.


African Swine Fever Virus , African Swine Fever , Polymorphism, Single Nucleotide , Transcription Factor RelA , Animals , African Swine Fever Virus/genetics , African Swine Fever Virus/immunology , Swine , Transcription Factor RelA/genetics , African Swine Fever/virology , African Swine Fever/genetics , African Swine Fever/immunology , Disease Resistance/genetics , Up-Regulation , Transcription, Genetic , Sequence Analysis, DNA , Sus scrofa/genetics , Sus scrofa/virology
2.
Virol J ; 18(1): 23, 2021 01 21.
Article En | MEDLINE | ID: mdl-33478547

BACKGROUND: African swine fever (ASF), a highly contagious hemorrhagic disease, affects domestic pigs in the Democratic Republic of Congo (DRC) where regular outbreaks are reported leading to high mortality rates approaching 100% in the affected regions. No study on the characteristics of the complete genome of strains responsible for ASF outbreaks in the South Kivu province of DRC is available, limited a better understanding of molecular evolution and spread of this virus within the country. The present study aimed at determining the complete genome sequence of ASFV strains genotype X involved in 2018-2019 ASF disease outbreaks in South Kivu province of DRC. MATERIALS AND METHODS: Genomic DNA of a spleen sample from an ASFV genotype X-positive domestic pig in Uvira, during the 2018-2019 outbreaks in South Kivu, was sequenced using the Illumina HiSeq X platform. Obtained trimmed reads using Geneious Prime 2020.0.4 were blasted against a pig reference genome then contigs were generated from the unmapped reads enriched in ASFV DNA using Spades implemented in Geneious 2020.0.4. The assembly of the complete genome sequence of ASFV was achieved from the longest overlapping contigs. The new genome was annotated with the genome annotation transfer utility (GATU) software and the CLC Genomics Workbench 8 software was further used to search for any ORFs that failed to be identified by GATU. Subsequent analyses of the newly determined Uvira ASFV genotype X genome were done using BLAST for databases search, CLUSTAL W for multiple sequences alignments and MEGA X for phylogeny. RESULTS: 42 Gbp paired-end reads of 150 bp long were obtained containing about 0.1% of ASFV DNA. The assembled Uvira ASFV genome, termed Uvira B53, was 180,916 bp long that could be assembled in 2 contigs. The Uvira B53genome had a GC content of 38.5%, encoded 168 open reading frames (ORFs) and had 98.8% nucleotide identity with the reference ASFV genotype X Kenya 1950. The phylogenetic relationship with selected representative genomes clustered the Uvira B53 strain together with ASFV genotype X reported to date (Kenya 1950 and Ken05/Tk1). Multiple genome sequences comparison with the two reference ASFV genotype X strains showed that 130 of the 168 ORFs were fully conserved in the Uvira B53. The other 38 ORFs were divergent mainly due to SNPs and indels (deletions and insertions). Most of 46 multigene family (MGF) genes identified were affected by various genetic variations. However, 8 MGF ORFs present in Kenya 1950 and Ken05/Tk1 were absent from the Uvira B53 genome including three members of MGF 360, four of MGF 110 and one of MGF 100 while one MGF ORF (MGF 360-1L) at the left end of the genome was truncated in Uvira B53. Moreover, ORFs DP96R and p285L were also absent in the Uvira B53 genome. In contrast, the ORF MGF 110-5L present in Uvira B53 and Ken05/Tk1 was missing in Kenya 1950. The analysis of the intergenic region between the I73R and I329L genes also revealed sequence variations between the three genotype X strains mainly characterized by a deletion of 69 bp in Uvira B53 and 36 bp in Kenya 1950, compared to Ken05/Tk1. Assessment of the CD2v (EP402R) antigen unveiled the presence of SNPs and indels particularly in the PPPKPY tandem repeat region between selected variants representing the eight serogroups reported to date. Uvira B53 had identical CD2v variable region to the Uganda (KM609361) strain, the only other ASFV serogroup 7 reported to date. CONCLUSION: We report the first complete genome sequence of an African swine fever virus (ASFV) p72 genotype X and CD2v serogroup 7, termed Uvira B53. This study provides additional insights on genetic characteristics and evolution of ASFV useful for tracing the geographical spread of ASF and essential for improved design of control and management strategies against ASF.


African Swine Fever Virus/genetics , African Swine Fever/virology , Genome, Viral , Genotype , Sus scrofa/virology , Whole Genome Sequencing , African Swine Fever/epidemiology , African Swine Fever Virus/classification , Animals , DNA, Viral/genetics , Democratic Republic of the Congo , High-Throughput Nucleotide Sequencing , Phylogeny , Sequence Analysis, DNA , Serogroup , Swine , Viral Proteins/genetics
3.
Virol J ; 17(1): 135, 2020 09 03.
Article En | MEDLINE | ID: mdl-32883295

BACKGROUND: African swine fever (ASF) is a highly contagious and severe hemorrhagic viral disease of domestic pigs. The analysis of variable regions of African swine fever virus (ASFV) genome led to more genotypic and serotypic information about circulating strains. The present study aimed at investigating the genetic diversity of ASFV strains in symptomatic pigs in South Kivu province of the Democratic Republic of Congo (DRC). MATERIALS AND METHODS: Blood samples collected from 391 ASF symptomatic domestic pigs in 6 of 8 districts in South Kivu were screened for the presence of ASFV, using a VP73 gene-specific polymerase chain reaction (PCR) with the universal primer set PPA1-PPA2. To genotype the strains, we sequenced and compared the nucleotide sequences of PPA-positive samples at three loci: the C-terminus of B646L gene encoding the p72 protein, the E183L gene encoding the p54 protein, and the central hypervariable region (CVR) of the B602L gene encoding the J9L protein. In addition, to serotype and discriminate between closely related strains, the EP402L (CD2v) gene and the intergenic region between the I73R and I329L genes were analyzed. RESULTS: ASFV was confirmed in 26 of 391 pigs tested. However, only 19 and 15 PPA-positive samples, respectively, were successfully sequenced and phylogenetically analyzed for p72 (B646L) and p54 (E183L). All the ASFV studied were of genotype X. The CVR tetrameric repeat clustered the ASFV strains in two subgroups: the Uvira subgroup (10 TRS repeats, AAAABNAABA) and another subgroup from all other strains (8 TRS repeats, AABNAABA). The phylogenetic analysis of the EP402L gene clustered all the strains into CD2v serogroup 7. Analyzing the intergenic region between I73R and I329L genes revealed that the strains were identical but contained a deletion of a 33-nucleotide internal repeat sequence compared to ASFV strain Kenya 1950. CONCLUSION: ASFV genotype X and serogroup 7 was identified in the ASF disease outbreaks in South Kivu province of DRC in 2018-2019. This represents the first report of ASFV genotype X in DRC. CVR tetrameric repeat sequences clustered the ASFV strains studied in two subgroups. Our finding emphasizes the need for improved coordination of the control of ASF.


African Swine Fever Virus/genetics , African Swine Fever Virus/isolation & purification , African Swine Fever/virology , African Swine Fever/epidemiology , African Swine Fever Virus/classification , Animals , Base Sequence , DNA, Viral/genetics , Democratic Republic of the Congo/epidemiology , Disease Outbreaks , Genotype , Phylogeny , Sequence Analysis, DNA , Serogroup , Sus scrofa/virology , Swine , Viral Proteins/genetics
4.
Vet Microbiol ; 240: 108521, 2020 Jan.
Article En | MEDLINE | ID: mdl-31902515

African swine fever (ASF) is the most important disease constraining smallholder pig production in the Democratic Republic of Congo, causing high mortality in domestic pigs with severe impacts on the livelihoods of local populations. This study was conducted with the aim of determining the prevalence of ASF and circulating virus genotypes in asymptomatic pigs raised on smallholder farms in the South Kivu province to understand the transmission dynamics of ASF and ultimately improving disease control. A cross-sectional survey was carried out in 5 districts where 267 pig blood were screened for both antibody and viral genome using indirect Enzyme Linked Immunosorbent Assay (ELISA) and polymerase chain reaction (PCR) respectively. Additionally, amplicons from PCR positive samples were sequenced by Sanger method for genetic analysis of ASF virus (ASFV) based on the C-terminal region of the B646L gene that encodes the major capsid protein p72 and the gene E183L encoding the p54 protein. The overall seroprevalence obtained based on antibody to p30 protein was 37 % and was significantly higher (P < 0.05) in adult (>1 year) animals (44.7 %) than in younger (<1 year) ones (33.5 %). Moreover, the seropositivity varied significantly (P < 0.05) according to the pig husbandry system practiced within the districts investigated with Uvira (55 %) and Mwenga (42.2 %) having the highest ASFV antibodies, while the lowest (10.5 %) were in Kalehe. Free-range pigs exhibited a higher level of seropositivity to ASFV antibody (68.9 %) than pigs kept in the pigsty housing system (21.6 %). However, no statistically significant differences (P > 0.05) were observed when sex of the animal and breed were factored. PCR detection of ASFV amplified a specific band of expected size (257 bp) in 61 out of 267 blood samples, confirming the presence of the viral DNA in 22.8 % of asymptomatic domestic pigs. Statistical analysis revealed that ASFV infection in domestic pigs varied significantly (p < 0.001) according to geographical location and breed, with the highest infection rate found in Walungu district (33.7 %) while the lowest was registered in Kalehe (15.8 %). Local pigs (27.2 %) were more infected than crosses (9.2 %). Phylogenetic analyses based on partial sequences of the p72 and p54 genes revealed that all the ASFV detected belonged to genotype IX, which has previously been reported in other parts of DR Congo, and was clustered together with isolates from Kenya, Uganda and Republic of Congo. This study avails the first evidence of the presence of ASF virus in domestic pigs in the absence of outbreaks in South Kivu province, eastern DR Congo, indicating a need to raise awareness among pig farmers and veterinary authorities on the application of biosecurity measures and good husbandry practices to control the disease.


African Swine Fever Virus/isolation & purification , African Swine Fever/epidemiology , Antibodies, Viral/blood , Genome, Viral , African Swine Fever/transmission , Animal Husbandry , Animals , Asymptomatic Infections/epidemiology , Capsid Proteins/genetics , Cross-Sectional Studies , DNA, Viral/blood , Democratic Republic of the Congo/epidemiology , Female , Genotype , Male , Phylogeny , Prevalence , Sequence Analysis, DNA , Seroepidemiologic Studies , Sus scrofa/virology , Swine/virology , Uganda/epidemiology
5.
Virol J ; 13: 18, 2016 Feb 01.
Article En | MEDLINE | ID: mdl-26833249

BACKGROUND: Human Coronaviruses (HCoV) are a common cause of respiratory illnesses and are responsible for considerable morbidity and hospitalization across all age groups especially in individuals with compromised immunity. There are six known species of HCoV: HCoV-229E, HCoV-NL63, HCoV-HKU1, HCoV-OC43, MERS-CoV and SARS-HCoV. Although studies have shown evidence of global distribution of HCoVs, there is limited information on their presence and distribution in Kenya. METHODS: HCoV strains that circulated in Kenya were retrospectively diagnosed and molecularly characterized. A total of 417 nasopharyngeal specimens obtained between January 2009 and December 2012 from around Kenya were analyzed by a real time RT-PCR using HCoV-specific primers. HCoV-positive specimens were subsequently inoculated onto monolayers of LL-CMK2 cells. The isolated viruses were characterized by RT-PCR amplification and sequencing of the partial polymerase (pol) gene. RESULTS: The prevalence of HCoV infection was as follows: out of the 417 specimens, 35 (8.4 %) were positive for HCoV, comprising 10 (2.4 %) HCoV-NL63, 12 (2.9 %) HCoV-OC43, 9 (2.1 %) HCoV-HKU1, and 4 (1 %) HCoV-229E. The Kenyan HCoV strains displayed high sequence homology to the prototypes and contemporaneous strains. Evolution analysis showed that the Kenyan HCoV-OC43 and HCoV-NL63 isolates were under purifying selection. Phylogenetic evolutionary analyses confirmed the identities of three HCoV-HKU1, five HCoV-NL63, eight HCoV-OC43 and three HCoV-229E. CONCLUSIONS: There were yearly variations in the prevalence and circulation patterns of individual HCoVs in Kenya. This paper reports on the first molecular characterization of human Coronaviruses in Kenya, which play an important role in causing acute respiratory infections among children.


Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus/classification , Coronavirus/genetics , Coronavirus/isolation & purification , Coronavirus Infections/history , Genes, pol , History, 21st Century , Humans , Kenya/epidemiology , Phylogeny , Population Surveillance , Prevalence , RNA, Viral
6.
Influenza Other Respir Viruses ; 10(3): 185-91, 2016 May.
Article En | MEDLINE | ID: mdl-26822469

BACKGROUND: Human rhinoviruses (HRVs) are a well-established cause of the common cold and recent studies indicated that they may be associated with severe acute respiratory illnesses (SARIs) like pneumonia, asthma, and bronchiolitis. Despite global studies on the genetic diversity of the virus, the serotype diversity of these viruses across diverse geographic regions in Kenya has not been characterized. OBJECTIVES: This study sought to characterize the serotype diversity of HRV strains that circulated in Kenya in 2008. METHODS: A total of 517 archived nasopharyngeal samples collected in a previous respiratory virus surveillance program across Kenya in 2008 were selected. Participants enrolled were outpatients who presented with influenza-like (ILI) symptoms. Real-time RT-PCR was employed for preliminary HRV detection. HRV-positive samples were amplified using RT-PCR and thereafter the nucleotide sequences of the amplicons were determined followed by phylogenetic analysis. RESULTS: Twenty-five percent of the samples tested positive for HRV. Phylogenetic analysis revealed that the Kenyan HRVs clustered into three main species comprising HRV-A (54%), HRV-B (12%), and HRV-C (35%). Overall, 20 different serotypes were identified. Intrastrain sequence homology among the Kenyan strains ranged from 58% to 100% at the nucleotide level and 55% to 100% at the amino acid level. CONCLUSION: These results show that a wide range of HRV serotypes with different levels of nucleotide variation were present in Kenya. Furthermore, our data show that HRVs contributed substantially to influenza-like illness in Kenya in 2008.


Genetic Variation , Picornaviridae Infections/epidemiology , Picornaviridae Infections/virology , Rhinovirus/genetics , Rhinovirus/immunology , Child , Child, Preschool , Female , Genes, Viral , Humans , Infant , Kenya/epidemiology , Male , Nasopharynx/virology , Outpatients , Phylogeny , Real-Time Polymerase Chain Reaction , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Rhinovirus/classification , Sequence Homology , Serogroup
7.
Virus Genes ; 51(3): 323-8, 2015 Dec.
Article En | MEDLINE | ID: mdl-26347221

Chikungunya virus (CHIKV) from a human sample collected during the 2005 Chikungunya outbreak in the Comoros Island, showed distinct and reproducible large (L2) and small (S7) plaques which were characterized in this study. The parent strain and plaque variants were analysed by in vitro growth kinetics in different cell lines and their genetic similarity assessed by whole genome sequencing, comparative sequence alignment and phylogenetic analysis. In vitro growth kinetic assays showed similar growth patterns of both plaque variants in Vero cells but higher viral titres of S7 compared to L2 in C6/36 cells. Amino acids (AA) alignments of the CHIKV plaque variants and S27 African prototype strain, showed 30 AA changes in the non-structural proteins (nsP) and 22 AA changes in the structural proteins. Between L2 and S7, only two AAs differences were observed. A missense substitution (C642Y) of L2 in the nsP2, involving a conservative AA substitution and a nonsense substitution (R524X) of S7 in the nsP3, which has been shown to enhance O'nyong-nyong virus infectivity and dissemination in Anopheles mosquitoes. The phenotypic difference observed in plaque size could be attributed to one of these AA substitutions. Phylogenetic analysis showed that the parent strain and its variants clustered closely together with each other and with Indian Ocean CHIKV strains indicating circulation of isolates with close evolutionary relatedness in the same outbreak. These observations pave way for important functional studies to understand the significance of the identified genetic changes in virulence and viral transmission in mosquito and mammalian hosts.


Chikungunya Fever/virology , Chikungunya virus/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Anopheles/virology , Base Sequence , Cell Line , Chikungunya Fever/transmission , Chikungunya virus/growth & development , Chlorocebus aethiops , Comoros , Disease Outbreaks , Genetic Drift , Genetic Variation , Humans , Molecular Sequence Data , Multigene Family , Phylogeny , Sequence Alignment , Vero Cells , Viral Nonstructural Proteins
8.
PLoS One ; 7(2): e31237, 2012.
Article En | MEDLINE | ID: mdl-22363591

BACKGROUND: The epidemiology of non-Typhi Salmonella (NTS) bacteremia in Africa will likely evolve as potential co-factors, such as HIV, malaria, and urbanization, also change. METHODS: As part of population-based surveillance among 55,000 persons in malaria-endemic, rural and malaria-nonendemic, urban Kenya from 2006-2009, blood cultures were obtained from patients presenting to referral clinics with fever ≥38.0°C or severe acute respiratory infection. Incidence rates were adjusted based on persons with compatible illnesses, but whose blood was not cultured. RESULTS: NTS accounted for 60/155 (39%) of blood culture isolates in the rural and 7/230 (3%) in the urban sites. The adjusted incidence in the rural site was 568/100,000 person-years, and the urban site was 51/100,000 person-years. In both sites, the incidence was highest in children <5 years old. The NTS-to-typhoid bacteremia ratio in the rural site was 4.6 and in the urban site was 0.05. S. Typhimurium represented >85% of blood NTS isolates in both sites, but only 21% (urban) and 64% (rural) of stool NTS isolates. Overall, 76% of S. Typhimurium blood isolates were multi-drug resistant, most of which had an identical profile in Pulse Field Gel Electrophoresis. In the rural site, the incidence of NTS bacteremia increased during the study period, concomitant with rising malaria prevalence (monthly correlation of malaria positive blood smears and NTS bacteremia cases, Spearman's correlation, p = 0.018 for children, p = 0.16 adults). In the rural site, 80% of adults with NTS bacteremia were HIV-infected. Six of 7 deaths within 90 days of NTS bacteremia had HIV/AIDS as the primary cause of death assigned on verbal autopsy. CONCLUSIONS: NTS caused the majority of bacteremias in rural Kenya, but typhoid predominated in urban Kenya, which most likely reflects differences in malaria endemicity. Control measures for malaria, as well as HIV, will likely decrease the burden of NTS bacteremia in Africa.


Bacteremia/epidemiology , Cost of Illness , Rural Population/statistics & numerical data , Salmonella Infections/epidemiology , Salmonella Infections/microbiology , Salmonella typhi/physiology , Urban Population/statistics & numerical data , Adult , Anti-Infective Agents/pharmacology , Bacteremia/complications , Bacteremia/microbiology , Bacteremia/mortality , Blood Specimen Collection , Child , Child, Preschool , Drug Resistance, Bacterial/drug effects , Electrophoresis, Gel, Pulsed-Field , Feces/microbiology , Humans , Incidence , Kenya/epidemiology , Malaria/complications , Malaria/mortality , Salmonella Infections/complications , Salmonella Infections/mortality , Salmonella typhi/drug effects , Salmonella typhi/isolation & purification
9.
J Invertebr Pathol ; 96(2): 97-105, 2007 Oct.
Article En | MEDLINE | ID: mdl-17574570

Virus-like particles, 27 nm in diameter, were observed in extracts of individual Varroa destructor mites and in sections of mite tissue. Application of a purification procedure resulted in virus preparations that were used to prepare an antiserum to detect the virus in individual mites. Immunohistology studies showed that the gastric caecae were heavily infected, whereas no immunostaining could be detected in other mite tissues or organs, like the salivary glands, brain, rectum or reproductive organs. By electron microscopy large aggregates of virus-like particles in para-crystalline lattices were found in cells of the gastric caecae. The particles, reminiscent to picorna-like viruses, occurred mainly in the cytoplasm, whereas some virus particles were sparsely scattered in vacuoles. Occasionally, particles were observed in membrane-bound vesicles or in long tubular membrane structures in the cytoplasm. The accumulation of the picorna-like virus particles in the cytoplasm and the presence of the virus in membrane structures give a strong indication that the virus replicates in the mite.


Acari/virology , Bees/parasitology , Picornaviridae/pathogenicity , Virion/pathogenicity , Animals , Antibodies, Viral , Cecum/ultrastructure , Cecum/virology , Cytoplasm/ultrastructure , Cytoplasm/virology , Ectoparasitic Infestations/pathology , Picornaviridae/immunology , Picornaviridae/ultrastructure , Picornaviridae Infections/pathology , Virion/immunology , Virion/ultrastructure
10.
J Gen Virol ; 87(Pt 11): 3397-3407, 2006 Nov.
Article En | MEDLINE | ID: mdl-17030876

Structure prediction of the 5' non-translated region (NTR) of four iflavirus RNAs revealed two types of potential internal ribosome entry site (IRES), which are discriminated by size and level of complexity, in this group of viruses. In contrast to the intergenic IRES of dicistroviruses, the potential 5' IRES structures of iflaviruses do not have pseudoknots. To test the activity of one of these, a bicistronic construct was made in which the 5' NTR of Varroa destructor virus 1 (VDV-1) containing a putative IRES was cloned in between two reporter genes, enhanced green fluorescent protein and firefly luciferase (Fluc). The presence of the 5' NTR of VDV-1 greatly enhanced the expression levels of the second reporter gene (Fluc) in Lymantria dispar Ld652Y cells. The 5' NTR was active in a host-specific manner, as it showed lower activity in Spodoptera frugiperda Sf21 cells and no activity in Drosophila melanogaster S2 cells.


5' Untranslated Regions/genetics , Gene Expression Regulation , Picornaviridae/genetics , RNA, Viral/genetics , 5' Untranslated Regions/metabolism , Algorithms , Animals , Base Composition , Base Sequence , Blotting, Northern , Cells, Cultured , Genes, Reporter/genetics , Genes, Viral/genetics , Insecta , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Messenger/analysis , Regulatory Sequences, Nucleic Acid , Ribosomes/metabolism , Species Specificity , Transfection
11.
J Gen Virol ; 85(Pt 12): 3747-3755, 2004 Dec.
Article En | MEDLINE | ID: mdl-15557248

Aggregations of 27 nm virus-like particles were observed in electron microscopy images of sectioned Varroa destructor mite tissue. The scattered occurrence of individual particles and accumulation of the virions in lattices in the cytoplasm gave an apparent indication that the virus replicates in the mite. Sequence analysis of the RNA of the purified virus revealed a genome organization with high similarity to that of members of the genus Iflavirus. Phylogenetic analysis of the polymerase showed that the virus was related most closely to Deformed wing virus (DWV) and Kakugo virus (KV) of bees. The virus has a genome of 10 112 nt without the poly(A) tail, with an overall RNA genome identity of 84 % to those of DWV and KV and has one large ORF, translated into a 2893 aa polyprotein with an amino acid identity of 95 % to those of DWV and KV. The first 1455 nt of the ORF encoding the lower molecular mass structural proteins shows the greatest diversion from those of DWV and KV, with an RNA identity of 79 %, and translates to a polypeptide of 485 aa with an identity of 90 %. The name proposed for this virus is Varroa destructor virus 1 (VDV-1). To determine whether VDV-1 replicates in mites, a selective RT-PCR was done to detect the presence of the negative-sense RNA strand. The virus isolate and the closely related DWV could be discriminated by two primer sets, each specific to one virus. Both viruses replicated in the population of the mite species studied.


Mites/virology , Picornaviridae/genetics , RNA, Viral/chemistry , Virus Replication , Amino Acid Sequence , Animals , Base Sequence , Genome, Viral , Molecular Sequence Data , Phylogeny , Picornaviridae/classification , Picornaviridae/physiology , Viral Structural Proteins/analysis , Viral Structural Proteins/chemistry
...