Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 75
1.
JCO Precis Oncol ; 7: e2200532, 2023 05.
Article En | MEDLINE | ID: mdl-37141550

PURPOSE: For patients with hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer (MBC), first-line treatment is endocrine therapy (ET) plus cyclin-dependent kinase 4/6 inhibition (CDK4/6i). After disease progression, which often comes with ESR1 resistance mutations (ESR1-MUT), which therapies to use next and for which patients are open questions. An active area of exploration is treatment with further CDK4/6i, particularly abemaciclib, which has distinct pharmacokinetic and pharmacodynamic properties compared with the other approved CDK4/6 inhibitors, palbociclib and ribociclib. We investigated a gene panel to prognosticate abemaciclib susceptibility in patients with ESR1-MUT MBC after palbociclib progression. METHODS: We examined a multicenter retrospective cohort of patients with ESR1-MUT MBC who received abemaciclib after disease progression on ET plus palbociclib. We generated a panel of CDK4/6i resistance genes and compared abemaciclib progression-free survival (PFS) in patients without versus with mutations in this panel (CDKi-R[-] v CDKi-R[+]). We studied how ESR1-MUT and CDKi-R mutations affect abemaciclib sensitivity of immortalized breast cancer cells and patient-derived circulating tumor cell lines in culture. RESULTS: In ESR1-MUT MBC with disease progression on ET plus palbociclib, the median PFS was 7.0 months for CDKi-R(-) (n = 17) versus 3.5 months for CDKi-R(+) (n = 11), with a hazard ratio of 2.8 (P = .03). In vitro, CDKi-R alterations but not ESR1-MUT induced abemaciclib resistance in immortalized breast cancer cells and were associated with resistance in circulating tumor cells. CONCLUSION: For ESR1-MUT MBC with resistance to ET and palbociclib, PFS on abemaciclib is longer for patients with CDKi-R(-) than CDKi-R(+). Although a small and retrospective data set, this is the first demonstration of a genomic panel associated with abemaciclib sensitivity in the postpalbociclib setting. Future directions include testing and improving this panel in additional data sets, to guide therapy selection for patients with HR+/HER2- MBC.


Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cyclin-Dependent Kinase 4/genetics , Retrospective Studies , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Disease Progression
2.
Nat Cancer ; 3(8): 961-975, 2022 08.
Article En | MEDLINE | ID: mdl-35982179

Rhabdomyosarcoma (RMS) is a common childhood cancer that shares features with developing skeletal muscle. Yet, the conservation of cellular hierarchy with human muscle development and the identification of molecularly defined tumor-propagating cells has not been reported. Using single-cell RNA-sequencing, DNA-barcode cell fate mapping and functional stem cell assays, we uncovered shared tumor cell hierarchies in RMS and human muscle development. We also identified common developmental stages at which tumor cells become arrested. Fusion-negative RMS cells resemble early myogenic cells found in embryonic and fetal development, while fusion-positive RMS cells express a highly specific gene program found in muscle cells transiting from embryonic to fetal development at 7-7.75 weeks of age. Fusion-positive RMS cells also have neural pathway-enriched states, suggesting less-rigid adherence to muscle-lineage hierarchies. Finally, we identified a molecularly defined tumor-propagating subpopulation in fusion-negative RMS that shares remarkable similarity to bi-potent, muscle mesenchyme progenitors that can make both muscle and osteogenic cells.


Rhabdomyosarcoma, Embryonal , Rhabdomyosarcoma , Child , Humans , Muscle, Skeletal/pathology , Rhabdomyosarcoma/genetics , Single-Cell Analysis , Stem Cells/pathology
3.
Mod Pathol ; 35(12): 1837-1847, 2022 12.
Article En | MEDLINE | ID: mdl-35871080

Though uncommon in melanoma, gene fusions may have therapeutic implications. Next generation sequencing-based clinical assays, designed to detect relevant gene fusions, mutations, and copy number changes, were performed on 750 melanomas (375 primary and 375 metastases) at our institution from 2014-2021. These included 599 (80%) cutaneous, 38 (5%) acral, 11 (1.5%) anorectal, 23 (3%) sinonasal, 27 (3.6%) eye (uveal/ conjunctiva), 11 (1.5%) genital (vulva/penile), and 41 (5.5%) melanomas of unknown primary. Sixteen fusions (2%) were detected in samples from 16 patients: 12/599 (2%) cutaneous, 2/38 (5%) acral, 1/9 (11%) vulva, 1/23(4.3%) sinonasal; and 12/16 (75%) fusions were potentially targetable. We identified two novel rearrangements: NAGS::MAST2 and NOTCH1::GNB1; and two fusions that have been reported in other malignancies but not in melanoma: CANT1::ETV4 (prostate cancer) and CCDC6::RET (thyroid cancer). Additional fusions, previously reported in melanoma, included: EML4::ALK, MLPH::ALK, AGAP3::BRAF, AGK::BRAF, CDH3::BRAF, CCT8::BRAF, DIP2B::BRAF, EFNB1::RAF1, LRCH3::RAF1, MAP4::RAF1, RUFY1::RAF1, and ADCY2::TERT. Fusion positive melanomas harbored recurrent alterations in TERT and CDKN2A, among others. Gene fusions were exceedingly rare (0.2%) in BRAF/RAS/NF1-mutant tumors and were detected in 5.6% of triple wild-type melanomas. Interestingly, gene rearrangements were significantly enriched within the subset of triple wild-type melanomas that harbor TERT promoter mutations (18% versus 2%, p < 0.0001). Thirteen (81%) patients were treated with immunotherapy for metastatic disease or in the adjuvant setting. Six of 12 (50%) patients with potentially actionable fusions progressed on immunotherapy, and 3/6 (50%) were treated with targeted agents (ALK and MEK inhibitors), 2 off-label and 1 as part of a clinical trial. One patient with an AGAP3::BRAF fusion positive melanoma experienced a 30-month long response to trametinib. We show that, detecting fusions, especially in triple wild-type melanomas with TERT promoter mutations, may have a clinically significant impact in patients with advanced disease who have failed front-line immunotherapy.


Melanoma , Proto-Oncogene Proteins B-raf , Male , Female , Humans , Proto-Oncogene Proteins B-raf/genetics , Melanoma/pathology , Gene Fusion , Mutation , Receptor Protein-Tyrosine Kinases/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/therapeutic use
4.
J Infect Dis ; 225(7): 1141-1150, 2022 04 01.
Article En | MEDLINE | ID: mdl-34888672

BACKGROUND: Understanding immunogenicity and effectiveness of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines is critical to guide rational use. METHODS: We compared the immunogenicity of mRNA-1273, BNT-162b2, and Ad26.COV2.S in healthy ambulatory adults. We performed an inverse-variance meta-analysis of population-level effectiveness from public health reports in > 40 million individuals. RESULTS: A single dose of either mRNA vaccine yielded comparable antibody and neutralization titers to convalescent individuals. Ad26.COV2.S yielded lower antibody concentrations and frequently undetectable neutralization titers. Bulk and cytotoxic T-cell responses were higher in mRNA1273 and BNT162b2 than Ad26.COV2.S recipients. Regardless of vaccine, <50% of vaccinees demonstrated CD8+ T-cell responses. Antibody concentrations and neutralization titers increased comparably after the first dose of either vaccine, and further in recipients of a second dose. Prior infection was associated with high antibody concentrations and neutralization even after a single dose and regardless of vaccine. Neutralization of Beta, Gamma, and Delta strains were poorer regardless of vaccine. In meta-analysis, relative to mRNA1273 the effectiveness of BNT162b2 was lower against infection and hospitalization, and Ad26COV2.S was lower against infection, hospitalization, and death. CONCLUSIONS: Variation in the immunogenicity correlates with variable effectiveness of the 3 vaccines deployed in the United States.


Ad26COVS1 , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Adult , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunogenicity, Vaccine , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
5.
medRxiv ; 2021 Oct 13.
Article En | MEDLINE | ID: mdl-34671780

BACKGROUND: Understanding immunogenicity and effectiveness of SARS-CoV-2 vaccines is critical to guide rational use. METHODS: We compared the immunogenicity of mRNA-1273, BNT-162b2 or Ad26.COV2.S in ambulatory adults in Massachusetts, USA. To correlate immunogenicity with effectiveness of the three vaccines, we performed an inverse-variance meta-analysis of population level effectiveness from public health reports in >40 million individuals. RESULTS: A single dose of either mRNA vaccine yielded comparable antibody and neutralization titers to convalescent individuals. Ad26.COV2.S yielded lower antibody concentrations and frequently negative neutralization titers. Bulk and cytotoxic T-cell responses were higher in mRNA1273 and BNT162b2 than Ad26.COV2.S recipients, and <50% of vaccinees demonstrate CD8+ T-cell responses to spike peptides. Antibody concentrations and neutralization titers increased comparably after the first dose of either vaccine, and further in recipients of a second dose. Prior infection was associated with high antibody concentrations and neutralization even after a single dose and regardless of vaccine. Neutralization of beta, gamma and delta strains were poorer regardless of vaccine. Relative to mRNA1273, the effectiveness of BNT162b2 was lower against infection and hospitalization; and Ad26COV2.S was lower against infection, hospitalization and death. CONCLUSIONS: Variation in the immunogenicity correlates with variable effectiveness of the three FDA EUA vaccines deployed in the USA.

6.
J Neuropathol Exp Neurol ; 80(2): 160-168, 2021 01 20.
Article En | MEDLINE | ID: mdl-33274363

Epilepsy is a heterogenous group of disorders defined by recurrent seizure activity due to abnormal synchronized activity of neurons. A growing number of epilepsy cases are believed to be caused by genetic factors and copy number variants (CNV) contribute to up to 5% of epilepsy cases. However, CNVs in epilepsy are usually large deletions or duplications involving multiple neurodevelopmental genes. In patients who underwent seizure focus resection for treatment-resistant epilepsy, whole genome DNA methylation profiling identified 3 main clusters of which one showed strong association with receptor tyrosine kinase (RTK) genes. We identified focal copy number gains involving epidermal growth factor receptor (EGFR) and PDGFRA loci. The dysplastic neurons of cases with amplifications showed marked overexpression of EGFR and PDGFRA, while glial and endothelial cells were negative. Targeted sequencing of regulatory regions and DNA methylation analysis revealed that only enhancer regions of EGFR and gene promoter of PDGFRA were amplified, while coding regions did not show copy number abnormalities or somatic mutations. Somatic focal copy number gains of noncoding regulatory represent a previously unrecognized genetic driver in epilepsy and a mechanism of abnormal activation of RTK genes. Upregulated RTKs provide a potential avenue for therapy in seizure disorders.


Brain/metabolism , DNA Copy Number Variations , DNA Methylation , Drug Resistant Epilepsy/genetics , ErbB Receptors/genetics , Adolescent , Adult , Child , Drug Resistant Epilepsy/metabolism , ErbB Receptors/metabolism , Female , Humans , In Situ Hybridization, Fluorescence , Male , Middle Aged , Retrospective Studies , Young Adult
7.
Article En | MEDLINE | ID: mdl-32923872

PURPOSE: Thymomas are epithelial neoplasms that represent the most common thymic tumors in adults. These tumors have been shown to harbor a relatively low mutational burden. As a result, there is a lack of genetic alterations that may be used prognostically or targeted therapeutically for this disease. Here, we describe a recurrent gene rearrangement in type B2 + B3 thymomas. PATIENTS AND METHODS: A single index case of thymoma was evaluated by an RNA-based solid fusion assay. Separately, tissues from 255,008 unique advanced cancers, including 242 thymomas, were sequenced by hybrid capture-based next-generation DNA sequencing/comprehensive genomic profiling of 186 to 406 genes, including lysine methyltransferase 2A (KMT2A) rearrangements, and a portion were evaluated for RNA of 265 genes. We characterized molecular and clinicopathologic features of the pertinent fusion-positive patient cases. RESULTS: We identified 11 patients with thymomas harboring a gene fusion of KMT2A and mastermind-like transcriptional coactivator 2 (MAML2). Fusion breakpoints were identified between exon 8, 9, 10, or 11 of KMT2A and exon 2 of MAML2. Fifty-five percent were men, with a median age of 48 years at surgery (range, 29-69 years). Concurrent genomic alterations were infrequent. The 11 thymomas were of B2 or B3 type histology, with 1 case showing foci of thymic carcinoma. The frequency of KMT2A-MAML2 fusion was 4% of all thymomas (10 of 242) and 6% of thymomas of B2 or B3 histology (10 of 169). CONCLUSION: KMT2A-MAML2 represents the first recurrent fusion described in type B thymoma. The fusion seems to be specific to type B2 and B3 thymomas, the most aggressive histologic subtypes. The identification of this fusion offers insights into the biology of thymoma and may have clinical relevance for patients with disease refractory to conventional therapeutic modalities.

9.
Head Neck Pathol ; 14(3): 817-821, 2020 Sep.
Article En | MEDLINE | ID: mdl-31502214

Salivary gland secretory carcinoma, also termed mammary analogue secretory carcinoma (MASC), is a recently described salivary gland neoplasm with characteristic histomorphologic findings similar to those of secretory carcinoma of the breast and harboring recurrent ETV6-NTRK3 fusions. Recent findings have expanded the molecular profile of salivary gland secretory carcinoma to include multiple novel ETV6 fusion partners, including RET, MET, and MAML3. Here, we report a case of cystic MASC with cribriform and papillary histology harboring two gene fusions, ETV6-RET and EGFR-SEPT14, identified by targeted RNA sequencing. The presence of the rearrangements was confirmed by FISH, RT-PCR, and Sanger sequencing. This is the first EGFR-SEPT14 fusion reported in secretory carcinoma as a single event or in association with an ETV6 rearrangement. This finding adds to the expanding molecular profile of this tumor entity, and may translate into novel treatment strategies.


Mammary Analogue Secretory Carcinoma/genetics , Parotid Neoplasms/genetics , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ret/genetics , Repressor Proteins/genetics , Septins/genetics , Adolescent , ErbB Receptors/genetics , Humans , Male , Oncogene Fusion/genetics , ETS Translocation Variant 6 Protein
10.
J Mol Diagn ; 21(3): 390-407, 2019 05.
Article En | MEDLINE | ID: mdl-30862547

The quantification of changes in gene copy number is critical to our understanding of tumor biology and for the clinical management of cancer patients. DNA fluorescence in situ hybridization is the gold standard method to detect copy number alterations, but it is limited by the number of genes one can quantify simultaneously. To increase the throughput of this informative technique, a fluorescent bar-code system for the unique labeling of dozens of genes and an automated image analysis algorithm that enabled their simultaneous hybridization for the quantification of gene copy numbers were devised. We demonstrate the reliability of this multiplex approach on normal human lymphocytes, metaphase spreads of transformed cell lines, and cultured circulating tumor cells. It also opens the door to the development of gene panels for more comprehensive analysis of copy number changes in tissue, including the study of heterogeneity and of high-throughput clinical assays that could provide rapid quantification of gene copy numbers in samples with limited cellularity, such as circulating tumor cells.


Genomics , In Situ Hybridization, Fluorescence/methods , Algorithms , Cell Line, Tumor , Chromosomes, Artificial, Bacterial/genetics , Color , Comparative Genomic Hybridization , Fluorescent Dyes/chemistry , Humans , Molecular Probes/chemistry , Reproducibility of Results
11.
Sci Rep ; 9(1): 139, 2019 01 15.
Article En | MEDLINE | ID: mdl-30644426

Intratumoural heterogeneity underlies tumour escape from molecularly targeted therapy in glioblastoma. A cell-based model preserving the evolving molecular profiles of a tumour during treatment is key to understanding the recurrence mechanisms and development of strategies to overcome resistance. In this study, we established a matched pair of glioblastoma stem-like cell (GSC) cultures from patient glioblastoma samples before and after epidermal growth factor receptor (EGFR)-targeted therapy. A patient with recurrent glioblastoma (MGG70R) harboring focal, high-level EGFR amplification received the irreversible EGFR tyrosine kinase inhibitor dacomitinib. The tumour that subsequently recurred (MGG70RR) showed diploid EGFR, suggesting inhibitor-mediated elimination of EGFR-amplified tumour cells and propagation of EGFR non-amplified cell subpopulations. The MGG70R-GSC line established from MGG70R formed xenografts retaining EGFR amplification and EGFR overexpression, while MGG70RR-GSC established from MGG70RR generated tumours that lacked EGFR amplification and EGFR overexpression. MGG70R-GSC-derived intracranial xenografts were more proliferative than MGG70RR-GSC xenografts, which had upregulated mesenchymal markers, mirroring the pathological observation in the corresponding patient tumours. In vitro MGG70R-GSC was more sensitive to EGFR inhibitors than MGG70RR-GSC. Thus, these molecularly distinct GSC lines recapitulated the subpopulation alteration that occurred during glioblastoma evasion of targeted therapy, and offer a valuable model facilitating therapeutic development for recurrent glioblastoma.


Glioblastoma/drug therapy , Molecular Targeted Therapy/methods , Animals , Brain Neoplasms , ErbB Receptors/antagonists & inhibitors , Glioblastoma/pathology , Glioma/pathology , Heterografts , Humans , Mice , Neoplasm Recurrence, Local/drug therapy , Quinazolinones/pharmacology , Quinazolinones/therapeutic use , Tumor Cells, Cultured
12.
Cancer Discov ; 8(3): 336-353, 2018 03.
Article En | MEDLINE | ID: mdl-29242214

We sought to uncover genetic drivers of hormone receptor-positive (HR+) breast cancer, using a targeted next-generation sequencing approach for detecting expressed gene rearrangements without prior knowledge of the fusion partners. We identified intergenic fusions involving driver genes, including PIK3CA, AKT3, RAF1, and ESR1, in 14% (24/173) of unselected patients with advanced HR+ breast cancer. FISH confirmed the corresponding chromosomal rearrangements in both primary and metastatic tumors. Expression of novel kinase fusions in nontransformed cells deregulates phosphoprotein signaling, cell proliferation, and survival in three-dimensional culture, whereas expression in HR+ breast cancer models modulates estrogen-dependent growth and confers hormonal therapy resistance in vitro and in vivo Strikingly, shorter overall survival was observed in patients with rearrangement-positive versus rearrangement-negative tumors. Correspondingly, fusions were uncommon (<5%) among 300 patients presenting with primary HR+ breast cancer. Collectively, our findings identify expressed gene fusions as frequent and potentially actionable drivers in HR+ breast cancer.Significance: By using a powerful clinical molecular diagnostic assay, we identified expressed intergenic fusions as frequent contributors to treatment resistance and poor survival in advanced HR+ breast cancer. The prevalence and biological and prognostic significance of these alterations suggests that their detection may alter clinical management and bring to light new therapeutic opportunities. Cancer Discov; 8(3); 336-53. ©2017 AACR.See related commentary by Natrajan et al., p. 272See related article by Liu et al., p. 354This article is highlighted in the In This Issue feature, p. 253.


Breast Neoplasms/genetics , Breast Neoplasms/mortality , Gene Fusion , Adult , Aged , Aged, 80 and over , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/genetics , Estrogen Receptor alpha/genetics , Female , Gene Expression Regulation, Neoplastic , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Mice, Nude , Middle Aged , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-raf/genetics , Pyridones/pharmacology , Pyrimidinones/pharmacology , Receptors, Steroid/metabolism , Ribosomal Protein S6 Kinases/genetics , Ribosomal Protein S6 Kinases/metabolism , Xenograft Model Antitumor Assays
13.
Science ; 355(6332)2017 03 31.
Article En | MEDLINE | ID: mdl-28360267

Tumor subclasses differ according to the genotypes and phenotypes of malignant cells as well as the composition of the tumor microenvironment (TME). We dissected these influences in isocitrate dehydrogenase (IDH)-mutant gliomas by combining 14,226 single-cell RNA sequencing (RNA-seq) profiles from 16 patient samples with bulk RNA-seq profiles from 165 patient samples. Differences in bulk profiles between IDH-mutant astrocytoma and oligodendroglioma can be primarily explained by distinct TME and signature genetic events, whereas both tumor types share similar developmental hierarchies and lineages of glial differentiation. As tumor grade increases, we find enhanced proliferation of malignant cells, larger pools of undifferentiated glioma cells, and an increase in macrophage over microglia expression programs in TME. Our work provides a unifying model for IDH-mutant gliomas and a general framework for dissecting the differences among human tumor subclasses.


Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioma/genetics , Glioma/pathology , Isocitrate Dehydrogenase/genetics , Tumor Microenvironment , Brain Neoplasms/classification , Cell Lineage , Glioma/classification , Humans , Macrophages , Microglia/metabolism , Microglia/pathology , Neoplasm Grading , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Principal Component Analysis , Sequence Analysis, RNA , Single-Cell Analysis
14.
Nature ; 539(7628): 309-313, 2016 11 10.
Article En | MEDLINE | ID: mdl-27806376

Although human tumours are shaped by the genetic evolution of cancer cells, evidence also suggests that they display hierarchies related to developmental pathways and epigenetic programs in which cancer stem cells (CSCs) can drive tumour growth and give rise to differentiated progeny. Yet, unbiased evidence for CSCs in solid human malignancies remains elusive. Here we profile 4,347 single cells from six IDH1 or IDH2 mutant human oligodendrogliomas by RNA sequencing (RNA-seq) and reconstruct their developmental programs from genome-wide expression signatures. We infer that most cancer cells are differentiated along two specialized glial programs, whereas a rare subpopulation of cells is undifferentiated and associated with a neural stem cell expression program. Cells with expression signatures for proliferation are highly enriched in this rare subpopulation, consistent with a model in which CSCs are primarily responsible for fuelling the growth of oligodendroglioma in humans. Analysis of copy number variation (CNV) shows that distinct CNV sub-clones within tumours display similar cellular hierarchies, suggesting that the architecture of oligodendroglioma is primarily dictated by developmental programs. Subclonal point mutation analysis supports a similar model, although a full phylogenetic tree would be required to definitively determine the effect of genetic evolution on the inferred hierarchies. Our single-cell analyses provide insight into the cellular architecture of oligodendrogliomas at single-cell resolution and support the cancer stem cell model, with substantial implications for disease management.


Neoplastic Stem Cells/pathology , Oligodendroglioma/genetics , Oligodendroglioma/pathology , Sequence Analysis, RNA , Single-Cell Analysis , Cell Differentiation , Cell Proliferation , DNA Copy Number Variations/genetics , Humans , Isocitrate Dehydrogenase/genetics , Neoplastic Stem Cells/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neuroglia/metabolism , Neuroglia/pathology , Phylogeny , Point Mutation
15.
Nature ; 537(7618): 102-106, 2016 09 01.
Article En | MEDLINE | ID: mdl-27556950

Circulating tumour cells in women with advanced oestrogen-receptor (ER)-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer acquire a HER2-positive subpopulation after multiple courses of therapy. In contrast to HER2-amplified primary breast cancer, which is highly sensitive to HER2-targeted therapy, the clinical significance of acquired HER2 heterogeneity during the evolution of metastatic breast cancer is unknown. Here we analyse circulating tumour cells from 19 women with ER+/HER2- primary tumours, 84% of whom had acquired circulating tumour cells expressing HER2. Cultured circulating tumour cells maintain discrete HER2+ and HER2- subpopulations: HER2+ circulating tumour cells are more proliferative but not addicted to HER2, consistent with activation of multiple signalling pathways; HER2- circulating tumour cells show activation of Notch and DNA damage pathways, exhibiting resistance to cytotoxic chemotherapy, but sensitivity to Notch inhibition. HER2+ and HER2- circulating tumour cells interconvert spontaneously, with cells of one phenotype producing daughters of the opposite within four cell doublings. Although HER2+ and HER2- circulating tumour cells have comparable tumour initiating potential, differential proliferation favours the HER2+ state, while oxidative stress or cytotoxic chemotherapy enhances transition to the HER2- phenotype. Simultaneous treatment with paclitaxel and Notch inhibitors achieves sustained suppression of tumorigenesis in orthotopic circulating tumour cell-derived tumour models. Together, these results point to distinct yet interconverting phenotypes within patient-derived circulating tumour cells, contributing to progression of breast cancer and acquisition of drug resistance.


Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Receptor, ErbB-2/metabolism , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Female , Humans , Neoplastic Cells, Circulating/drug effects , Phenotype , Receptor, ErbB-2/deficiency , Receptor, Notch1/antagonists & inhibitors , Receptor, Notch1/metabolism , Signal Transduction
16.
Clin Cancer Res ; 22(17): 4452-65, 2016 Sep 01.
Article En | MEDLINE | ID: mdl-27076630

PURPOSE: Deregulated Myc drives an oncogenic metabolic state, including pseudohypoxic glycolysis, adapted for the constitutive production of biomolecular precursors to feed rapid tumor cell growth. In glioblastoma, Myc facilitates renewal of the tumor-initiating cell reservoir contributing to tumor maintenance. We investigated whether targeting the Myc-driven metabolic state could be a selectively toxic therapeutic strategy for glioblastoma. EXPERIMENTAL DESIGN: The glycolytic dependency of Myc-driven glioblastoma was tested using (13)C metabolic flux analysis, glucose-limiting culture assays, and glycolysis inhibitors, including inhibitors of the NAD(+) salvage enzyme nicotinamide phosphoribosyl-transferase (NAMPT), in MYC and MYCN shRNA knockdown and lentivirus overexpression systems and in patient-derived glioblastoma tumorspheres with and without MYC/MYCN amplification. The in vivo efficacy of glycolyic inhibition was tested using NAMPT inhibitors in MYCN-amplified patient-derived glioblastoma orthotopic xenograft mouse models. RESULTS: Enforced Myc overexpression increased glucose flux and expression of glycolytic enzymes in glioblastoma cells. Myc and N-Myc knockdown and Myc overexpression systems demonstrated that Myc activity determined sensitivity and resistance to inhibition of glycolysis. Small-molecule inhibitors of glycolysis, particularly NAMPT inhibitors, were selectively toxic to MYC/MYCN-amplified patient-derived glioblastoma tumorspheres. NAMPT inhibitors were potently cytotoxic, inducing apoptosis and significantly extended the survival of mice bearing MYCN-amplified patient-derived glioblastoma orthotopic xenografts. CONCLUSIONS: Myc activation in glioblastoma generates a dependency on glycolysis and an addiction to metabolites required for glycolysis. Glycolytic inhibition via NAMPT inhibition represents a novel metabolically targeted therapeutic strategy for MYC or MYCN-amplified glioblastoma and potentially other cancers genetically driven by Myc. Clin Cancer Res; 22(17); 4452-65. ©2016 AACR.


Antineoplastic Agents/pharmacology , Glioblastoma/genetics , Glioblastoma/metabolism , Glucose/metabolism , Proto-Oncogene Proteins c-myc/genetics , Animals , Apoptosis/genetics , Cell Line, Tumor , Disease Models, Animal , Gene Amplification , Glioblastoma/drug therapy , Glycolysis/genetics , Humans , Mice , NAD/metabolism , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/metabolism , Proto-Oncogene Proteins c-myc/metabolism , RNA Interference , RNA, Small Interfering/genetics , Xenograft Model Antitumor Assays
17.
Genes Chromosomes Cancer ; 55(8): 626-39, 2016 08.
Article En | MEDLINE | ID: mdl-27106868

Inhibition of the PD-L1 (CD274) - PD-1 axis has emerged as a powerful cancer therapy that prevents evasion of tumor cells from the immune system. While immunohistochemical detection of PD-L1 was introduced as a predictive biomarker with variable power, much less is known about copy number alterations (CNA) affecting PD-L1 and their associations with expression levels, mutational load, and survival. To gain insight, we employed The Cancer Genome Atlas (TCGA) datasets to comprehensively analyze 22 major cancer types for PD-L1 CNAs. We observed a diverse landscape of PD-L1 CNAs, which affected focal regions, chromosome 9p or the entire chromosome 9. Deletions of PD-L1 were more frequent than gains (31% vs. 12%) with deletions being most prevalent in melanoma and non-small cell lung cancer. Copy number gains most frequently occurred in ovarian cancer, head and neck cancer, bladder cancer, cervical and endocervical cancer, sarcomas, and colorectal cancers. Fine-mapping of the genetic architecture revealed specific recurrently amplified and deleted core regions across cancers with putative biological and clinical consequences. PD-L1 CNAs correlated significantly with PD-L1 mRNA expression changes in many cancer types, and tumors with PD-L1 gains harbored significantly higher mutational load compared to non-amplified cases (median: 78 non-synonymous mutations vs. 40, P = 7.1e-69). Moreover, we observed that, in general, both PD-L1 amplifications and deletions were associated with dismal prognosis. In conclusion, PD-L1 CNAs, in particular PD-L1 copy number gains, represent frequent genetic alterations across many cancers, which influence PD-L1 expression levels, are associated with higher mutational loads, and may be exploitable as predictive biomarker for immunotherapy regimens. © 2016 Wiley Periodicals, Inc.


B7-H1 Antigen/genetics , Biomarkers, Tumor/genetics , DNA Copy Number Variations/genetics , Neoplasms/genetics , B7-H1 Antigen/biosynthesis , Biomarkers, Tumor/biosynthesis , Gene Expression Regulation, Neoplastic , Humans , Immunotherapy , Mutation , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Programmed Cell Death 1 Receptor/genetics
18.
J Thorac Oncol ; 10(8): 1156-62, 2015 Aug.
Article En | MEDLINE | ID: mdl-26200269

INTRODUCTION: Invasive mucinous adenocarcinoma is a unique histologic subtype of lung cancer, and our knowledge of its genetic and clinical characteristics is rapidly evolving. Here, we present next- generation sequencing analysis of nucleotide variant and fusion events along with clinical follow-up in a series of lung mucinous adenocarcinoma. METHODS: We collected 72 mucinous adenocarcinomas from the United States and Korea. All had been previously assessed for KRAS and EGFR mutations. For KRAS wild-type cases (n = 30), we performed deep targeted next-generation sequencing for gene fusions and nucleotide variants and correlated survival and other clinical features. RESULTS: As expected, KRAS mutations were the most common alteration found (63% of cases); however, the distribution of nucleotide position alterations was more similar to that observed in gastrointestinal tumors than other lung tumors. Within the KRAS-negative cases, we found numerous potentially targetable gene fusions and mutations, including CD74-NRG1, VAMP2-NRG1, TRIM4-BRAF, TPM3-NTRK1, and EML4-ALK gene fusions and ERBB2, BRAF, and PIK3CA mutations. Unexpectedly, we found only two cases with TP53 mutation, which is much lower than observed in lung adenocarcinomas in general. The overall mutation burden was low in histologically confirmed mucinous adenocarcinomas from the public The Cancer Genome Atlas exome data set, regardless of smoking history, suggesting a link between TP53 status and mutation burden in mucinous tumors. There was no significant difference for recurrence-free survival between stage-matched mucinous and nonmucinous adenocarcinomas. It was notable that all recurrence sites were in the lungs for completely resected cases. CONCLUSIONS: Our data suggest that mucinous adenocarcinoma is typified by (1) frequent KRAS mutations and a growing list of gene fusions, but rare TP53 mutations, (2) a low mutation burden overall, and (3) a recurrence-free survival similar to stage-matched nonmucinous tumors, with recurrences limited to the lungs.


Adenocarcinoma, Mucinous/genetics , ErbB Receptors/genetics , Lung Neoplasms/genetics , Neoplasm Recurrence, Local/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Adenocarcinoma, Mucinous/mortality , Adenocarcinoma, Mucinous/pathology , Adult , Aged , Aged, 80 and over , Antigens, Differentiation, B-Lymphocyte/genetics , Class I Phosphatidylinositol 3-Kinases , DNA Mutational Analysis , DNA, Neoplasm/analysis , Disease-Free Survival , Female , Histocompatibility Antigens Class II/genetics , Humans , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Male , Middle Aged , Mutation , Neoplasm Invasiveness , Neuregulin-1/genetics , Oncogene Fusion , Oncogene Proteins, Fusion/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins B-raf/genetics , Receptor, ErbB-2/genetics , Receptor, trkA/genetics , Tropomyosin/genetics , Tumor Suppressor Protein p53/genetics , Vesicle-Associated Membrane Protein 2/genetics
19.
J Am Soc Nephrol ; 26(12): 3102-13, 2015 Dec.
Article En | MEDLINE | ID: mdl-25855773

Progress in long-term renal allograft survival continues to lag behind the progress in short-term transplant outcomes. Dendritic cells are the most efficient antigen-presenting cells, but surprisingly little attention has been paid to their presence in transplanted kidneys. We used dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin as a marker of dendritic cells in 105 allograft biopsy samples from 105 kidney transplant recipients. High dendritic cell density was associated with poor allograft survival independent of clinical variables. Moreover, high dendritic cell density correlated with greater T cell proliferation and poor outcomes in patients with high total inflammation scores, including inflammation in areas of tubular atrophy. We then explored the association between dendritic cells and histologic variables associated with poor prognosis. Multivariate analysis revealed an independent association between the densities of dendritic cells and T cells. In biopsy samples with high dendritic cell density, electron microscopy showed direct physical contact between infiltrating lymphocytes and cells that have the ultrastructural morphologic characteristics of dendritic cells. The origin of graft dendritic cells was sought in nine sex-mismatched recipients using XY fluorescence in situ hybridization. Whereas donor dendritic cells predominated initially, the majority of dendritic cells in late allograft biopsy samples were of recipient origin. Our data highlight the prognostic value of dendritic cell density in allograft biopsy samples, suggest a new role for these cells in shaping graft inflammation, and provide a rationale for targeting dendritic cell recruitment to promote long-term allograft survival.


Allografts/pathology , Cell Adhesion Molecules/analysis , Dendritic Cells/chemistry , Graft Survival , Kidney Transplantation , Kidney/pathology , Lectins, C-Type/analysis , Receptors, Cell Surface/analysis , Adult , Allografts/immunology , Biopsy , Dendritic Cells/pathology , Dendritic Cells/ultrastructure , Female , Graft Survival/immunology , Humans , Kidney/immunology , Male , Microscopy, Electron , Middle Aged , Nephritis/pathology , Predictive Value of Tests , T-Lymphocytes/pathology , T-Lymphocytes/ultrastructure
20.
Am J Physiol Renal Physiol ; 305(1): F71-9, 2013 Jul 01.
Article En | MEDLINE | ID: mdl-23637205

Experimental hydronephrosis induced by partial ureteral obstruction at 3 wk of age causes hypertension and renal impairment in adult rats and mice. Signaling by Ephrin receptors (Eph) and their ligands (ephrins) importantly regulates embryonic development. Genetically modified mice, where the cytoplasmic domain of the EphA4 receptor has been substituted by enhanced green fluorescent protein (EphA4gf/gf), develop spontaneous hydronephrosis and provide a model for further studies of the disorder. The present study aimed to determine if animals with congenital hydronephrosis develop hypertension and renal injuries, similar to that of experimental hydronephrosis. Ultrasound and Doppler techniques were used to visualize renal impairment in the adult mice. Telemetric blood pressure measurements were performed in EphA4gf/gf mice and littermate controls (EphA4+/+) during normal (0.7% NaCl)- and high (4% NaCl)-sodium conditions. Renal excretion, renal plasma flow, and glomerular filtration were studied, and histology and morphology of the kidneys and ureters were performed. EphA4gf/gf mice developed variable degrees of hydronephrosis that correlated with their blood pressure level. In contrast to EphA4+/+, the EphA4gf/gf mice displayed salt-sensitive hypertension, reduced urine concentrating ability, reduced renal plasma flow, and lower glomerular filtration rate. Kidneys from EphA4gf/gf mice showed increased renal injuries, as evidenced by fibrosis, inflammation, and glomerular and tubular changes. In conclusion, congenital hydronephrosis causes hypertension and renal damage, similar to that observed in experimentally induced hydronephrosis. This study further reinforces the supposed causal link between hydronephrosis and later development of hypertension in humans.


Blood Pressure , Hydronephrosis/enzymology , Hypertension/enzymology , Kidney/enzymology , Receptor, EphA4/metabolism , Signal Transduction , Animals , Blood Pressure Monitoring, Ambulatory/methods , Disease Models, Animal , Disease Progression , Female , Fibrosis , Glomerular Filtration Rate , Hydronephrosis/diagnosis , Hydronephrosis/genetics , Hydronephrosis/pathology , Hydronephrosis/physiopathology , Hypertension/diagnosis , Hypertension/genetics , Hypertension/pathology , Hypertension/physiopathology , Kidney/blood supply , Kidney/pathology , Kidney/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptor, EphA4/genetics , Renal Plasma Flow , Renin/blood , Sodium Chloride, Dietary/administration & dosage , Telemetry , Ultrasonography, Doppler , Ureter/enzymology , Ureter/pathology
...