Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Compr Rev Food Sci Food Saf ; 23(5): e13433, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39217508

RESUMEN

Food packaging plays a crucial role in the food supply chain by aiding in food preservation and reducing food losses throughout the distribution process. The extensive, unregulated utilization, and waste mismanagement of food packaging materials made up of conventional petroleum-based plastics has led to a significant environmental crisis. Egg components-based food packaging has attracted considerable attention from the global packaging industry as a viable alternative to synthetic polymers due to its biodegradability, sustainability, and health-related benefits. This comprehensive review explores the composition and properties of egg components (eggshell, eggshell membrane, egg white, and egg yolk), and recent advancements in biodegradable packaging films derived from them. Additionally, it introduces the characteristics of these films and their applications in food, highlighting their biodegradability, sustainability, and suitable mechanical, barrier, thermal, optical, antioxidant, and antimicrobial properties as substitutes for traditional synthetic polymers. The utilization of various egg components in the packaging industry is a safe, non-toxic, cost-effective, and economical approach. However, it was found that incorporating active compounds from natural sources into packaging films, as well as composite films composed of egg components combined with other biopolymers, resulted in superior properties, compared to single component films. Moreover, the application of novel technologies in film development has proven to be more effective than conventional methods. These innovative egg components-based packaging films can be optimized and commercialized for use as packaging materials for food products.


Asunto(s)
Embalaje de Alimentos , Embalaje de Alimentos/métodos , Huevos , Animales , Cáscara de Huevo/química , Biodegradación Ambiental , Yema de Huevo/química , Conservación de Alimentos/métodos , Clara de Huevo/química
2.
Crit Rev Food Sci Nutr ; : 1-17, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096052

RESUMEN

Microalgal, species are recognized for their high protein content, positioning them as a promising source of this macronutrient. Spirulina platensis, in particular, is noteworthy for its rich protein levels (70 g/100 g dw), which are higher than those of meat and legumes. Incorporating this microalgae into food can provide various benefits to human health due to its diverse chemical composition, encompassing high amount of protein and elevated levels of minerals, phenolics, essential fatty acids, and pigments. Conventional techniques employed for protein extraction from S. platensis have several drawbacks, prompting the exploration of innovative extraction techniques (IETs) to overcome these limitations. Recent advancements in extraction methods include ultrasound-assisted extraction, microwave-assisted extraction, high-pressure-assisted extraction, supercritical fluid extraction, pulse-electric field assisted extraction, ionic liquids assisted extraction, and pressurized liquid extraction. These IETs have demonstrated efficiency in enhancing protein yield of high quality while maximizing biomass utilization. This comprehensive review delves into the mechanisms, applications, and drawbacks associated with implementing IETs in protein extraction from S. platensis. Notably, these innovative methods offer advantages such as increased extractability, minimized protein denaturation, reduced solvent consumption, and lower energy consumption. However, safety considerations and the synergistic effects of combined extraction methods warrant further exploration and investigation of their underlying mechanisms.

3.
J Nutr Metab ; 2024: 1868161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139215

RESUMEN

Food safety is a global concern, with millions suffering from foodborne diseases annually. The World Health Organization (WHO) reports significant morbidity and mortality associated with contaminated food consumption, and this emphasizes the critical need for comprehensive food safety measures. Recent attention has turned to postbiotics, metabolic byproducts of probiotics, as potential agents for enhancing food safety. Postbiotics, including organic acids, enzymes, and bacteriocins, exhibit antimicrobial and antioxidant properties that do not require live organisms, and this offers advantages over probiotics. This literature review critically examines the role of postbiotics in gut microbiome modulation and applications in the food industry. Through an extensive review of existing literature, this study evaluates the impact of postbiotics on gut microbiome composition and their potential as functional food ingredients. Research indicates that postbiotics are effective in inhibiting food pathogens such as Staphylococcus aureus, Salmonella enterica, and Escherichia coli, as well as their ability to prevent oxidative stress-related diseases, and they also show promise as alternatives to conventional food preservatives that can extend food shelf life by inhibiting harmful bacterial growth. Their application in functional foods contributes to improved gut health and reduced risk of foodborne illnesses. Findings suggest that postbiotics hold promise for improving health and preservation by inhibiting pathogenic bacteria growth and modulating immune responses.

4.
Immun Inflamm Dis ; 12(8): e1360, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39150224

RESUMEN

BACKGROUND: Messenger RNA (mRNA) vaccines emerged as a powerful tool in the fight against infections. Unlike traditional vaccines, this unique type of vaccine elicits robust and persistent innate and humoral immune response with a unique host cell-mediated pathogen gene expression and antigen presentation. METHODS: This offers a novel approach to combat poxviridae infections. From the genome of vaccinia and Mpox viruses, three key genes (E8L, E7R, and H3L) responsible for virus attachment and virulence were selected and employed for designing the candidate mRNA vaccine against vaccinia and Mpox viral infection. Various bioinformatics tools were employed to generate (B cell, CTL, and HTL) epitopes, of which 28 antigenic and immunogenic epitopes were selected and are linked to form the mRNA vaccine construct. Additional components, including a 5' cap, 5' UTR, adjuvant, 3' UTR, and poly(A) tail, were incorporated to enhance stability and effectiveness. Safety measures such as testing for human homology and in silico immune simulations were implemented to avoid autoimmunity and to mimics the immune response of human host to the designed mRNA vaccine, respectively. The mRNA vaccine's binding affinity was evaluated by docking it with TLR-2, TLR-3, TLR-4, and TLR-9 receptors which are subsequently followed by molecular dynamics simulations for the highest binding one to predict the stability of the binding complex. RESULTS: With a 73% population coverage, the mRNA vaccine looks promising, boasting a molecular weight of 198 kDa and a molecular formula of C8901H13609N2431O2611S48 and it is said to be antigenic, nontoxic and nonallergic, making it safe and effective in preventing infections with Mpox and vaccinia viruses, in comparison with other insilico-designed vaccine for vaccinia and Mpox viruses. CONCLUSIONS: However, further validation through in vivo and in vitro techniques is underway to fully assess its potential.


Asunto(s)
Biología Computacional , Virus Vaccinia , Vacunas de ARNm , Humanos , Virus Vaccinia/inmunología , Virus Vaccinia/genética , Biología Computacional/métodos , Infecciones por Poxviridae/prevención & control , Infecciones por Poxviridae/inmunología , Vaccinia/prevención & control , Vaccinia/inmunología , Vacunas Sintéticas/inmunología , ARN Mensajero/inmunología , ARN Mensajero/genética , Vacunas Virales/inmunología , Epítopos de Linfocito B/inmunología , Desarrollo de Vacunas , Epítopos de Linfocito T/inmunología
5.
Polymers (Basel) ; 16(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39125231

RESUMEN

Every year, contaminated water is responsible for over one million deaths globally. Microbiology leads other fields in the development of solutions to water contamination to reduce these deaths while advancing the achievement of SDG 6, which aims to ensure universal access to water and sanitation. This article explores hydrogel polymers as a solution to water contamination through microbial control. Using a systematic approach, this study collects, reviews, analyzes, and synthesizes the findings of studies on the structure, properties, and mechanisms used by hydrogel polymers in pathogen control in water systems, emphasizing recent advances in microbiology that have improved the antimicrobial properties of hydrogel polymers, enhanced their synthetic properties, and improved their overall ability to control the spread of pathogens in water. Other additional notable findings, including the applications of hydrogel polymers in water systems, the environmental implications of using the method to decontaminate and purify water for various purposes, and the regulatory standards needed to reinforce the viability and effectiveness of the adaptation of hydrogel polymers for the control of harmful or unwanted microorganisms in water systems, inform the presented inferences on the future of hydrogel technologies and new opportunities for the expansion of their commercial use.

6.
Nutrients ; 16(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999784

RESUMEN

Food insecurity, a multifaceted global challenge, intertwines with mental health concerns, necessitating nuanced strategies for sustainable solutions. The intricate web of challenges posed by these intersections has made it imperative to delineate a strategic way forward, incorporating solutions and robust policy recommendations. This study aims to comprehensively examine the intricate relationship between food security and its intersection with mental health on a global scale, offering insights into case studies, responses, and innovative approaches to inform effective strategies for addressing these pressing challenges. This study involved an analysis of a literature search, mainly between 2013 and 2023, with an updated addition of relevant 2024 studies. Examining responses across regions unveils varied interventions, from targeted social safety net programs in West Africa to technology-driven solutions in Asia. Success stories, such as Ghana's sustainable agricultural practices and Canada's income transfer programs, underscore the efficacy of multifaceted approaches. Innovative initiatives like community food programs offer promising alternatives to traditional food banks. Furthermore, international cooperation and policy innovations, exemplified by the European Union's "Farm to Fork Strategy", demonstrate the potential for collective action in addressing food insecurity. By prioritizing integrated strategies, global collaboration, and evidence-based policymaking, we lay the groundwork for sustainable development where communities thrive nutritionally and mentally. We emphasize continuous research and evaluation and incorporating mental health support into community programs to pave the way for a future where communities are not only food-secure but also mentally resilient.


Asunto(s)
Seguridad Alimentaria , Salud Mental , Desarrollo Sostenible , Humanos , Abastecimiento de Alimentos , Inseguridad Alimentaria , Salud Global
7.
In Silico Pharmacol ; 12(2): 68, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070665

RESUMEN

Epstein-Barr Virus (EBV), structurally similar to other herpes viruses, possess significant global health challenges as it causes infectious mononucleosis and is also associated with various cancers. Due to this widespread impact, an effective messenger RNA (mRNA) vaccine is paramount to help curb its spread, further underscoring the need for its development. This study, following an immunoinformatic approach, aimed to design a comprehensive mRNA vaccine against the EBV by selecting antigenic proteins, predicting Linear B-cell epitopes, cytotoxic T-cell lymphocyte (CTL) and helper T-cell lymphocyte (HTL) epitopes, and assessing vaccine characteristics. Seventy-nine EBV isolates from diverse geographical regions were examined. Additionally, the vaccine construct's physicochemical properties, transmembrane domains, solubility, and secondary structures were analysed. Molecular docking was conducted with Toll-Like Receptor 5 (TLR-5). Population coverage was assessed for selected major histocompatibility complex (MHC) alleles, and immune response was simulated. The result of this study highlighted a vaccine construct with high antigenicity, non-toxicity, and non-allergenicity and possessed favourable physicochemical properties. The vaccine's 3D structure is native-like and strongly binds with TLR-5, indicating a solid affinity with TLR-5. The selected MHC alleles provided broad universal population coverage of 89.1%, and the immune simulations suggested a robust and wide-ranging immunogenic response, activating critical immune cells, antibodies, and cytokines. These findings provide a solid foundation for further development and testing of the EBV candidate vaccine, offering potential solutions for combating EBV infections.

8.
Front Microbiol ; 15: 1385301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903778

RESUMEN

Introduction: Kefir beverage has beneficial microorganisms that have health-giving properties; therefore, they have a good potential to be probiotic. This study evaluated the probiotic potential, technological, and safety characteristics of Enterococcus faecalis, Lactococcus lactis, and Pichia fermentans isolated from traditional kefir beverages. Method: First, isolates were evaluated in terms of resistance to acid, alkali, bile salts, trypsin, and pepsin of the gastrointestinal tract. The auto-aggregation and co-aggregation ability of isolates were measured using spectrophotometry. Antimicrobial activities were assayed against important food-borne pathogens using the agar well diffusion method. Moreover, gamma-aminobutyric acid (GABA) production was investigated by thin-layer chromatography (TLC). Result: Among the isolates, P. fermentans had an 85% total survival rate, but its amount reached below 6 log CFU/ml which is considered non-resistant, and it showed the highest auto-aggregation (74.67%). Moreover, only L. lactis showed antimicrobial activity and had the highest co-aggregation with E. coli PTCC 1338 (54.33%) and L. monocytogenes ATCC 7644 (78%). Finally, an evaluation of the technological and safety characteristics of the strains showed that the strains produced GABA and were safe. Discussion: Although the isolates were not resistant to the gastrointestinal tract, their supernatant contained valuable natural compounds, including antioxidants, GABA, and antimicrobials, which can be used to produce functional foods and medicines. In addition, other approaches, such as increasing the initial number of strains, using foods as carriers of isolates, and encapsulating the isolates, can effectively increase the survivability of isolates in the gastrointestinal tract.

9.
Int J Microbiol ; 2024: 6612162, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799770

RESUMEN

Predictive microbiology is a rapidly evolving field that has gained significant interest over the years due to its diverse application in food safety. Predictive models are widely used in food microbiology to estimate the growth of microorganisms in food products. These models represent the dynamic interactions between intrinsic and extrinsic food factors as mathematical equations and then apply these data to predict shelf life, spoilage, and microbial risk assessment. Due to their ability to predict the microbial risk, these tools are also integrated into hazard analysis critical control point (HACCP) protocols. However, like most new technologies, several limitations have been linked to their use. Predictive models have been found incapable of modeling the intricate microbial interactions in food colonized by different bacteria populations under dynamic environmental conditions. To address this issue, researchers are integrating several new technologies into predictive models to improve efficiency and accuracy. Increasingly, newer technologies such as whole genome sequencing (WGS), metagenomics, artificial intelligence, and machine learning are being rapidly adopted into newer-generation models. This has facilitated the development of devices based on robotics, the Internet of Things, and time-temperature indicators that are being incorporated into food processing both domestically and industrially globally. This study reviewed current research on predictive models, limitations, challenges, and newer technologies being integrated into developing more efficient models. Machine learning algorithms commonly employed in predictive modeling are discussed with emphasis on their application in research and industry and their advantages over traditional models.

10.
J Environ Manage ; 359: 120816, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38669876

RESUMEN

The escalating threat of plastic pollution necessitates urgent and immediate action, particularly within the food and beverage (F&B) industry, a significant contributor to single-use plastic waste (SUP). As the global population surges, so does the consumption of single-use plastics in the F&B sector, perpetuating a linear economy model characterized by a 'take, make, use, dispose' approach. This model significantly exacerbates plastic waste issues, with projections indicating an alarming increase in plastic outputs by 2050 if current practices continue. Against this backdrop, the circular economy presents a viable alternative, with its emphasis on resource retention, recovery, and the extension of product lifecycles. This study delves into the problems posed by single-use plastics, introduces the circular economy as a sustainable model, and explores effective strategies for the recycling and reuse of plastic waste within this framework. By examining the environmental impact of SUP in the F&B sector and advocating for the adoption of circular economy principles, this paper underscores a critical pathway towards sustainable solutions in the battle against plastic pollution. In conclusion, the transition to a circular economy, underpinned by global collaboration and the proactive implementation of supportive policies, is imperative for reducing the environmental footprint of single-use plastics and fostering a sustainable future.


Asunto(s)
Industria de Alimentos , Plásticos , Reciclaje , Bebidas/economía , Administración de Residuos/métodos , Administración de Residuos/economía , Contaminación Ambiental/prevención & control
11.
J Basic Microbiol ; 64(6): e2300614, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38507723

RESUMEN

From its early identification by Christian Gottfried Ehrenberg to its current prominence in scientific research, Bacillus subtilis (B. subtilis) has emerged as a foundational model organism in microbiology. This comprehensive review delves deep into its genetic, physiological, and biochemical intricacies, revealing a sophisticated cellular blueprint. With the incorporation of advanced techniques such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 and integrative computational methodologies, the potential applications of B. subtilis span diverse sectors. These encompass its significant contributions to biotechnology, agriculture, and medical fields and its potential for aiding environmental cleanup efforts. Yet, as we move forward, we must grapple with concerns related to safety, ethics, and the practical implementation of our lab findings in everyday scenarios. As our understanding of B. subtilis deepens, it is evident that its contributions will be central to pioneering sustainable solutions for global challenges in the years to come.


Asunto(s)
Bacillus subtilis , Biotecnología , Ecología , Bacillus subtilis/genética , Sistemas CRISPR-Cas , Agricultura , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Genoma Bacteriano
12.
Nutrients ; 16(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38398825

RESUMEN

Food insecurity is a significant public health problem worldwide and critical to mental health. There is a complex relationship between food security and mental health. We carried out a narrative review study aiming to address how food insecurity impacts mental wellbeing by focusing on the mental health repercussions of food insecurity, recognizing its pivotal role in attaining Sustainable Development Goals 2 (on hunger) and 3 (on enhancing global wellbeing). A comprehensive search was conducted on PubMed and Google Scholar, incorporating Google searches for pertinent reports and policy documents. To address these questions, we emphasized and elucidated the interconnectedness between food security and mental health. The review shows that food security and mental health share a profound relationship influenced by multifaceted factors like socioeconomic conditions, access to nutritious food, and societal inequalities. We then provide recommendations for integrating food security into mental health strategies based on the insights and conclusions drawn. Strategies ranging from sustainable farming practices to urban agriculture initiatives and digital mental health services demonstrate avenues for enhancing food safety and mental wellbeing. This highlights the need for collaborative interdisciplinary efforts and systemic reforms to address these interconnected challenges.


Asunto(s)
Seguridad Alimentaria , Salud Mental , Humanos , Factores Socioeconómicos , Inseguridad Alimentaria , Abastecimiento de Alimentos , Hambre , Desarrollo Sostenible
13.
Sci Total Environ ; 920: 171047, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38373458

RESUMEN

Climate change is one of the most significant challenges worldwide. There is strong evidence from research that climate change will impact several food chain-related elements such as agricultural output, incomes, prices, food access, food quality, and food safety. This scoping review seeks to outline the state of knowledge of the food supply chain's vulnerability to climate change and to identify existing literature that may guide future research, policy, and decision-making aimed at enhancing the resilience of the food supply chain. A total of 1526 publications were identified using the SCOPUS database, of which 67 were selected for the present study. The vulnerability assessment methods as well as the adaptation and resilience measures that have been employed to alleviate the impact of climate change in the food supply chain were discussed. The results revealed a growing number of publications providing evidence of the weakening of the food supply chain due to climate change and extreme weather events. Our assessment demonstrated the need to broaden research into the entire food supply chain and various forms of climatic variability because most studies have concentrated on the relationships between climatic fluctuations (especially extreme rainfall, temperatures, and drought) and production. A lack of knowledge about the effects of climate change on the food supply chain and the underlying socio-economic consequences could result in underperformance or failure of the food supply chain.


Asunto(s)
Cambio Climático , Abastecimiento de Alimentos , Agricultura/métodos , Sequías , Temperatura
14.
Food Sci Nutr ; 11(12): 7515-7522, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38107102

RESUMEN

Physical contaminants in food, such as glass, metal, and plastic, can cause significant health risks and economic loss. This study explores these understudied physical hazards, aiming to provide comprehensive risk analysis and preventive solutions. Our research identified several key infiltration points in the food supply chain, including raw material sourcing and packaging stages. These hazards can be effectively mitigated by employing advanced technologies like metal detectors and optical sorting machines, along with stringent quality control measures. The findings offer valuable insights for stakeholders in the food industry, emphasizing the need for regulatory compliance and consumer education to ensure food safety.

15.
Life (Basel) ; 13(9)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37763290

RESUMEN

The rampant spread of the COVID-19 infection poses a grave and formidable challenge to global healthcare, with particular concern to the inhabitants of the African continent. In response to these pressing concerns, different strategies have been employed to combat the emergence of this insidious disease, encompassing crucial measures such as physical distancing, the utilization of face masks, meticulous hand hygiene, and widespread vaccination campaigns. Nevertheless, the economic realities faced by numerous African nations, characterized by their classification as "low-income countries (LICs)", present a formidable barrier to accessing and distributing approved vaccines to their populations. Moreover, it is essential to discuss the hesitancy of the European Union (EU) in releasing intellectual property rights associated with the transfer of vaccine technology to Africa. While the EU has been a key player in global efforts to combat the pandemic, there has been reluctance in sharing valuable knowledge and resources with African countries. This hesitancy raises concerns about equitable vaccine access and the potential for a prolonged health crisis in Africa. This review underscores the urgent imperative and need of establishing localized vaccine development and production facilities within Africa, necessitating the active involvement of governments and collaborative partnerships to achieve this crucial objective. Furthermore, this review advocates for the exploration of viable avenues for the transfer of vaccine technology as a means to facilitate equitable vaccine access across the African continent and also the cruciality and the need for the EU to reconsider its stance and actively engage in transferring vaccine technology to Africa through sharing intellectual property. The EU can contribute to the establishment of localized vaccine production facilities on the continent, which will not only increase vaccine availability but also promote self-sufficiency and resilience in the face of future health emergencies.

16.
Foods ; 12(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37761048

RESUMEN

Listeria monocytogenes (LM) is a bacterial pathogen responsible for listeriosis, a foodborne illness associated with high rates of mortality (20-30%) and hospitalisation. It is particularly dangerous among vulnerable groups, such as newborns, pregnant women and the elderly. The persistence of this organism in food-associated environments for months to years has been linked to several devastating listeriosis outbreaks. It may also result in significant costs to food businesses and economies. Currently, the mechanisms that facilitate LM persistence are poorly understood. Unravelling the enigma of what drives listerial persistence will be critical for developing more targeted control and prevention strategies. One prevailing hypothesis is that persistent strains exhibit stronger biofilm production on abiotic surfaces in food-associated environments. This review aims to (i) provide a comprehensive overview of the research on the relationship between listerial persistence and biofilm formation from phenotypic and whole-genome sequencing (WGS) studies; (ii) to highlight the ongoing challenges in determining the role biofilm development plays in persistence, if any; and (iii) to propose future research directions for overcoming these challenges.

17.
Virol J ; 20(1): 191, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626376

RESUMEN

BACKGROUND: The recent outbreak of the Coronavirus pandemic resulted in a successful vaccination program launched by the World Health Organization. However, a large population is still unvaccinated, leading to the emergence of mutated strains like alpha, beta, delta, and B.1.1.529 (Omicron). Recent reports from the World Health Organization raised concerns about the Omicron variant, which emerged in South Africa during a surge in COVID-19 cases in November 2021. Vaccines are not proven completely effective or safe against Omicron, leading to clinical trials for combating infection by the mutated virus. The absence of suitable pharmaceuticals has led scientists and clinicians to search for alternative and supplementary therapies, including dietary patterns, to reduce the effect of mutated strains. MAIN BODY: This review analyzed Coronavirus aetiology, epidemiology, and natural products for combating Omicron. Although the literature search did not include keywords related to in silico or computational research, in silico investigations were emphasized in this study. Molecular docking was implemented to compare the interaction between natural products and Chloroquine with the ACE2 receptor protein amino acid residues of Omicron. The global Omicron infection proceeding SARS-CoV-2 vaccination was also elucidated. The docking results suggest that DGCG may bind to the ACE2 receptor three times more effectively than standard chloroquine. CONCLUSION: The emergence of the Omicron variant has highlighted the need for alternative therapies to reduce the impact of mutated strains. The current review suggests that natural products such as DGCG may be effective in binding to the ACE2 receptor and combating the Omicron variant, however, further research is required to validate the results of this study and explore the potential of natural products to mitigate COVID-19.


Asunto(s)
Productos Biológicos , COVID-19 , Humanos , Productos Biológicos/farmacología , Enzima Convertidora de Angiotensina 2 , Vacunas contra la COVID-19 , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Cloroquina , Tratamiento Farmacológico de COVID-19
18.
Gene ; 887: 147725, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37625562

RESUMEN

Enterobacter sichuanensis AJI 2411 is a rhizobacteria displaying plant growth promoting potentials, which was isolated from the rhizosphere of soybeans in Ede, Osun State, Nigeria. The full genome of Enterobacter sichuanensis AJI 2411 was sequenced and reported in this study to shed light on the molecular mechanisms that aids the bacteria's plant growth-promoting abilities.


Asunto(s)
Enterobacter , Desarrollo de la Planta , Enterobacter/genética , Desarrollo de la Planta/genética , Rizosfera , Genómica , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Microbiología del Suelo
19.
Ann Med Surg (Lond) ; 85(7): 3545-3552, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37427196

RESUMEN

The Chikungunya virus (CHIKV), transmitted via mosquitoes, exhibits clinical manifestations ranging from headaches, myalgia and arthralgia to debilitating systemic malfunctions. Endemic to Africa, CHIKV has seen an increase in cases since it was first recorded in 1950. There has recently been an outbreak in numerous African nations. The authors aim to review the history and epidemiology of CHIKV in Africa, current outbreaks, strategies adopted by governments and/or international organisations to mitigate such an outbreak, and future recommendations that can be employed. Methodology: Data were collected from medical journals published on Pubmed and Google Scholar, and from the official World Health Organisation, African and United States of America's Centres for Disease Control and Prevention websites. All articles considering CHIKV in Africa, including epidemiology, aetiology, prevention and management, were sought after. Results: Since 2015, the number of Chikungunya cases in Africa has increased, reaching the highest values ever recorded, especially in 2018 and 2019. Even though numerous vaccination and therapeutic intervention trials are still ongoing, no advancement has been made so far, including drug approval. Current management is supportive, with preventative measures, such as insecticides, repellents, mosquito nets and habitat avoidance, paramount to halting disease spread. Conclusion: In light of the recent CHIKV outbreak in Africa, local and global attempts are re-emerging to mitigate the eruption of the case of the lack of vaccines and antivirals, controlling the virus may be an arduous feat. Improving risk assessment, laboratory detection and research facilities should be a priority.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA