Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EBioMedicine ; 75: 103800, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35022146

RESUMEN

BACKGROUND: Major challenges in large scale genetic association studies include not only the identification of causative single nucleotide polymorphisms (SNPs), but also accounting for SNP-SNP interactions. This study thus proposes a novel feature engineering approach integrating potentially functional coding haplotypes (pfcHap) with machine-learning (ML) feature selection to identify biologically meaningful, possibly causative genetic factors, that take into consideration potential SNP-SNP interactions within the pfcHap, to best predict for methotrexate (MTX) response in rheumatoid arthritis (RA) patients. METHODS: Exome sequencing from 349 RA patients were analysed, of which they were split into training and unseen test set. Inferred pfcHaps were combined with 30 non-genetic features to undergo ML recursive feature elimination with cross-validation using the training set. Predictive capacity and robustness of the selected features were assessed using six popular machine learning models through a train set cross-validation and evaluated in an unseen test set. FINDINGS: Significantly, 100 features (95 pfcHaps, 5 non-genetic factors) were identified to have good predictive performance (AUC: 0.776-0.828; Sensitivity: 0.656-0.813; Specificity: 0.684-0.868) across all six ML models in an unseen test dataset for the prediction of MTX response in RA patients. INTERPRETATION: Majority of the predictive pfcHap SNPs were predicted to be potentially functional and some of the genes in which the pfcHap resides in were identified to be associated with previously reported MTX/RA pathways. FUNDING: Singapore Ministry of Health's National Medical Research Council (NMRC) [NMRC/CBRG/0095/2015; CG12Aug17; CGAug16M012; NMRC/CG/017/2013]; National Cancer Center Research Fund and block funding Duke-NUS Medical School.; Singapore Ministry of Education Academic Research Fund Tier 2 grant MOE2019-T2-1-138.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Haplotipos , Humanos , Aprendizaje Automático , Metotrexato/uso terapéutico , Polimorfismo de Nucleótido Simple
2.
Rheumatology (Oxford) ; 61(10): 4175-4186, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35094058

RESUMEN

OBJECTIVE: To develop a hypothesis-free model that best predicts response to MTX drug in RA patients utilizing biologically meaningful genetic feature selection of potentially functional single nucleotide polymorphisms (pfSNPs) through robust machine learning (ML) feature selection methods. METHODS: MTX-treated RA patients with known response were divided in a 4:1 ratio into training and test sets. From the patients' exomes, potential features for classifier prediction were identified from pfSNPs and non-genetic factors through ML using recursive feature elimination with cross-validation incorporating the random forest classifier. Feature selection was repeated on random subsets of the training cohort, and consensus features were assembled into the final feature set. This feature set was evaluated for predictive potential using six ML classifiers, first by cross-validation within the training set, and finally by analysing its performance with the unseen test set. RESULTS: The final feature set contains 56 pfSNPs and five non-genetic factors. The majority of these pfSNPs are located in pathways related to RA pathogenesis or MTX action and are predicted to modulate gene expression. When used for training in six ML classifiers, performance was good in both the training set (area under the curve: 0.855-0.916; sensitivity: 0.715-0.892; and specificity: 0.733-0.862) and the unseen test set (area under the curve: 0.751-0.826; sensitivity: 0.581-0.839; and specificity: 0.641-0.923). CONCLUSION: Sensitive and specific predictors of MTX response in RA patients were identified in this study through a novel strategy combining biologically meaningful and machine learning feature selection and training. These predictors may facilitate better treatment decision-making in RA management.


Asunto(s)
Artritis Reumatoide , Metotrexato , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Artritis Reumatoide/patología , Estudios de Cohortes , Humanos , Aprendizaje Automático , Metotrexato/uso terapéutico , Polimorfismo de Nucleótido Simple
3.
Front Pharmacol ; 12: 605764, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33967749

RESUMEN

Statins can cause muscle symptoms resulting in poor adherence to therapy and increased cardiovascular risk. We hypothesize that combinations of potentially functional SNPs (pfSNPs), rather than individual SNPs, better predict myalgia in patients on atorvastatin. This study assesses the value of potentially functional single nucleotide polymorphisms (pfSNPs) and employs six machine learning algorithms to identify the combination of SNPs that best predict myalgia. Methods: Whole genome sequencing of 183 Chinese, Malay and Indian patients from Singapore was conducted to identify genetic variants associated with atorvastatin induced myalgia. To adjust for confounding factors, demographic and clinical characteristics were also examined for their association with myalgia. The top factor, sex, was then used as a covariate in the whole genome association analyses. Variants that were highly associated with myalgia from this and previous studies were extracted, assessed for potential functionality (pfSNPs) and incorporated into six machine learning models. Predictive performance of a combination of different models and inputs were compared using the average cross validation area under ROC curve (AUC). The minimum combination of SNPs to achieve maximum sensitivity and specificity as determined by AUC, that predict atorvastatin-induced myalgia in most, if not all the six machine learning models was determined. Results: Through whole genome association analyses using sex as a covariate, a larger proportion of pfSNPs compared to non-pf SNPs were found to be highly associated with myalgia. Although none of the individual SNPs achieved genome wide significance in univariate analyses, machine learning models identified a combination of 15 SNPs that predict myalgia with good predictive performance (AUC >0.9). SNPs within genes identified in this study significantly outperformed SNPs within genes previously reported to be associated with myalgia. pfSNPs were found to be more robust in predicting myalgia, outperforming non-pf SNPs in the majority of machine learning models tested. Conclusion: Combinations of pfSNPs that were consistently identified by different machine learning models to have high predictive performance have good potential to be clinically useful for predicting atorvastatin-induced myalgia once validated against an independent cohort of patients.

4.
Theor Biol Med Model ; 8: 13, 2011 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-21535890

RESUMEN

BACKGROUND: Keloids are protrusive claw-like scars that have a propensity to recur even after surgery, and its molecular etiology remains elusive. The goal of reverse engineering is to infer gene networks from observational data, thus providing insight into the inner workings of a cell. However, most attempts at modeling biological networks have been done using simulated data. This study aims to highlight some of the issues involved in working with experimental data, and at the same time gain some insights into the transcriptional regulatory mechanism present in keloid fibroblasts. METHODS: Microarray data from our previous study was combined with microarray data obtained from the literature as well as new microarray data generated by our group. For the physical approach, we used the fREDUCE algorithm for correlating expression values to binding motifs. For the influence approach, we compared the Bayesian algorithm BANJO with the information theoretic method ARACNE in terms of performance in recovering known influence networks obtained from the KEGG database. In addition, we also compared the performance of different normalization methods as well as different types of gene networks. RESULTS: Using the physical approach, we found consensus sequences that were active in the keloid condition, as well as some sequences that were responsive to steroids, a commonly used treatment for keloids. From the influence approach, we found that BANJO was better at recovering the gene networks compared to ARACNE and that transcriptional networks were better suited for network recovery compared to cytokine-receptor interaction networks and intracellular signaling networks. We also found that the NFKB transcriptional network that was inferred from normal fibroblast data was more accurate compared to that inferred from keloid data, suggesting a more robust network in the keloid condition. CONCLUSIONS: Consensus sequences that were found from this study are possible transcription factor binding sites and could be explored for developing future keloid treatments or for improving the efficacy of current steroid treatments. We also found that the combination of the Bayesian algorithm, RMA normalization and transcriptional networks gave the best reconstruction results and this could serve as a guide for future influence approaches dealing with experimental data.


Asunto(s)
Fibroblastos/metabolismo , Fibroblastos/patología , Redes Reguladoras de Genes/genética , Ingeniería Genética/métodos , Queloide/genética , Algoritmos , Sitios de Unión , Medio de Cultivo Libre de Suero , Bases de Datos Genéticas , Fibroblastos/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Queloide/patología , Receptores de Citocinas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Esteroides/farmacología , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA