Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 607(7917): 191-196, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35732732

RESUMEN

Bacterial conjugation is the fundamental process of unidirectional transfer of DNAs, often plasmid DNAs, from a donor cell to a recipient cell1. It is the primary means by which antibiotic resistance genes spread among bacterial populations2,3. In Gram-negative bacteria, conjugation is mediated by a large transport apparatus-the conjugative type IV secretion system (T4SS)-produced by the donor cell and embedded in both its outer and inner membranes. The T4SS also elaborates a long extracellular filament-the conjugative pilus-that is essential for DNA transfer4,5. Here we present a high-resolution cryo-electron microscopy (cryo-EM) structure of a 2.8 megadalton T4SS complex composed of 92 polypeptides representing 8 of the 10 essential T4SS components involved in pilus biogenesis. We added the two remaining components to the structural model using co-evolution analysis of protein interfaces, to enable the reconstitution of the entire system including the pilus. This structure describes the exceptionally large protein-protein interaction network required to assemble the many components that constitute a T4SS and provides insights on the unique mechanism by which they elaborate pili.


Asunto(s)
Proteínas Bacterianas , Microscopía por Crioelectrón , Sistemas de Secreción Tipo IV , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Conjugación Genética , ADN/genética , Evolución Molecular , Fimbrias Bacterianas/metabolismo , Plásmidos/genética , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/metabolismo , Sistemas de Secreción Tipo IV/ultraestructura
2.
Antiviral Res ; 158: 88-102, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30086336

RESUMEN

The 31st International Conference on Antiviral Research (ICAR) was held in Porto, Portugal from June 11-15, 2018. In this report, volunteer rapporteurs provide their summaries of scientific presentations, hoping to effectively convey the speakers' goals and the results and conclusions of their talks. This report provides an overview of the invited keynote and award lectures and highlights of short oral presentations, from the perspective of experts in antiviral research. Of note, a session on human cytomegalovirus included an update on the introduction to the clinic of letermovir for the prevention of CMV infection and disease. The 31st ICAR successfully promoted new discoveries in antiviral research and drug development. The 32nd ICAR will be held in Baltimore, Maryland, USA, May 6-10, 2019.


Asunto(s)
Antivirales/uso terapéutico , Antivirales/farmacología , Distinciones y Premios , Descubrimiento de Drogas , Humanos , Portugal , Investigación
3.
Invest Ophthalmol Vis Sci ; 55(11): 7355-60, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25404643

RESUMEN

Inherited retinal diseases (IRDs) represent a clinical and genetic heterogeneous group of chorioretinal disorders. The frequency of persons affected by an IRD due to mutations in the same gene varies from 1 in 10,000 to less than 1 in a million. To perform meaningful genotype-phenotype analyses for rare genetic conditions, it is necessary to collect data from sizable populations. Although several standardized functional tests are used widely, ophthalmologic data usually are stored in local databases and not in multicenter databases that are linked with other centers. To be able to register ophthalmologic data of all Dutch patients with IRDs into one database, we developed the RD5000 database (RD5000db), which can harbor all ophthalmologic and selected genetic data. Authorization rights for the management, data entry, and data sharing have been set up, rendering this database into a user-friendly, secure, and widely used repository that will facilitate future studies into molecular genetics and therapies for IRDs. The RD5000db database has the potential to grow into a European standard for the registration of data from IRDs.


Asunto(s)
ADN/genética , Predisposición Genética a la Enfermedad , Mutación , Retina/patología , Enfermedades de la Retina , Análisis Mutacional de ADN , Bases de Datos Factuales , Humanos , Enfermedades de la Retina/diagnóstico , Enfermedades de la Retina/genética , Enfermedades de la Retina/terapia
4.
J Bacteriol ; 192(9): 2315-23, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20172994

RESUMEN

Type IV secretion (T4S) systems are involved in several secretion processes, including secretion of virulence factors, such as toxins or transforming molecules, or bacterial conjugation whereby two mating bacteria exchange genetic material. T4S systems are generally composed of 12 protein components, three of which, termed VirB4, VirB11, and VirD4, are ATPases. VirB4 is the largest protein of the T4S system, is known to play a central role, and interacts with many other T4S system proteins. In this study, we have biochemically characterized the protein TraB, a VirB4 homologue from the pKM101 conjugation T4S system. We demonstrated that TraB is a modular protein, composed of two domains, both able to bind DNA in a non-sequence-specific manner. Surprisingly, both TraB N- and C-terminal domains can bind ATP, revealing a new degenerated nucleotide-binding site in the TraB N-terminal domain. TraB purified from the membrane forms stable dimers and is unable to hydrolyze ATP while, when purified from the soluble fraction, TraB can form hexamers capable of hydrolyzing ATP. Remarkably, both the N- and C-terminal domains display ATP-hydrolyzing activity. These properties define a new class of VirB4 proteins.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Conjugación Genética/fisiología , Proteínas de Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biología Computacional , Conjugación Genética/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Cinética , Datos de Secuencia Molecular , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homología de Secuencia de Aminoácido
5.
Mol Microbiol ; 58(4): 1130-42, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16262795

RESUMEN

The VirE2 protein is crucial for the transfer of single-stranded DNA (ssDNA) from Agrobacterium tumefaciens to the nucleus of the plant host cell because of its ssDNA binding activity, assistance in nuclear import and putative ssDNA channel activity. The native form of VirE2 in Agrobacterium's cytoplasm is in complex with its specific chaperone, VirE1. Here, we describe the ability of the VirE1VirE2 complex to both bind ssDNA and form channels. The affinity of the VirE1VirE2 complex for ssDNA is slightly reduced compared with VirE2, but the kinetics of binding to ssDNA are unaffected by the presence of VirE1. Upon binding of VirE1VirE2 to ssDNA, similar helical structures to those reported for the VirE2-ssDNA complex were observed by electron microscopy. The VirE1VirE2 complex can release VirE1 once the VirE2-ssDNA complexes assembled. VirE2 exhibits a low affinity for small unilamellar vesicles composed of bacterial lipids and a high affinity for lipid vesicles containing sterols and sphingolipids, typical components of animal and plant membranes. In contrast, the VirE1VirE2 complex associated similarly with all kind of lipids. Finally, black lipid membrane experiments revealed the ability of the VirE1VirE2 complex to form channels. However, the majority of the channels displayed a conductance that was a third of the conductance of VirE2 channels. Our results demonstrate that the binding of VirE1 to VirE2 does not inhibit VirE2 functions and that the effector-chaperone complex is multifunctional.


Asunto(s)
Agrobacterium tumefaciens/metabolismo , Proteínas Bacterianas/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Canales Iónicos/metabolismo , Chaperonas Moleculares/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Metabolismo de los Lípidos , Sustancias Macromoleculares/metabolismo , Membranas/metabolismo , Microscopía Electrónica
6.
J Mol Biol ; 351(5): 1070-80, 2005 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-16038932

RESUMEN

In various western countries, subtype P1.4 of Neisseria meningitidis serogroup B causes the greatest incidence of meningococcal disease. To investigate the molecular recognition of this subtype, we crystallised a peptide (P1HVVVNNKVATH(P11)), corresponding to the subtype P1.4 epitope sequence of outer membrane protein PorA, in complex with a Fab fragment of the bactericidal antibody MN20B9.34 directed against this epitope. Structure determination at 1.95 A resolution revealed a unique complex of one P1.4 antigen peptide bound to two identical Fab fragments. One Fab recognises the putative epitope residues in a 2:2 type I beta-turn at residues P5NNKV(P8), whereas the other Fab binds the C-terminal residues of the peptide that we consider a crystallisation artefact. Interestingly, recognition of the P1.4 epitope peptide is mediated almost exclusively through the complementarity-determining regions of the heavy chain. We exploited the observed turn conformation for designing conformationally restricted cyclic peptides for use as a peptide vaccine. The conformational stability of the two peptide designs was assessed by molecular dynamics simulations. Unlike the linear peptide, both cyclic peptides, conjugated to tetanus toxoid as a carrier protein, elicited antibody responses in mice that recognised meningococci of subtype P1.7-2,4. Serum bactericidal assays showed that some, but not all, of the sera induced with the cyclic peptide conjugates could activate the complement system with titres that were very high compared to the titres induced by complete PorA protein in its native conformation administered in outer membrane vesicles.


Asunto(s)
Péptidos/química , Porinas/química , Porinas/inmunología , Vacunas/química , Animales , Clonación Molecular , Cristalografía por Rayos X , Ensayo de Inmunoadsorción Enzimática , Epítopos/química , Humanos , Fragmentos de Inmunoglobulinas/química , Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/química , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Neisseria meningitidis/metabolismo , Unión Proteica , Conformación Proteica , Análisis de Secuencia de ADN , Programas Informáticos , Difracción de Rayos X
7.
Proc Natl Acad Sci U S A ; 102(12): 4596-601, 2005 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-15764702

RESUMEN

Type IV secretion systems (T4SSs) are commonly used secretion machineries in Gram-negative bacteria. They are used in the infection of human, animal, or plant cells and the propagation of antibiotic resistance. The T4SS apparatus spans both membranes of the bacterium and generally is composed of 12 proteins, named VirB1-11 and VirD4 after proteins of the canonical Agrobacterium tumefaciens T4SS. The periplasmic core complex of VirB8/VirB10 structurally and functionally links the cytoplasmic NTPases of the system with its outer membrane and pilus components. Here we present crystal structures of VirB8 of Brucella suis, the causative agent of brucellosis, and ComB10, a VirB10 homolog of Helicobacter pylori, the causative agent of gastric ulcers. The structures of VirB8 and ComB10 resemble known folds, albeit with novel secondary-structure modifications unique to and conserved within their respective families. Both proteins crystallized as dimers, providing detailed predictions about their self associations. These structures make a substantial contribution to the repertoire of T4SS component structures and will serve as springboards for future functional and protein-protein interaction studies by using knowledge-based site-directed and deletion mutagenesis.


Asunto(s)
Proteínas Bacterianas/química , Brucella suis/química , Helicobacter pylori/química , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Brucella suis/genética , Brucella suis/patogenicidad , Brucella suis/fisiología , Clonación Molecular , Secuencia Conservada , Cristalografía por Rayos X , Dimerización , Helicobacter pylori/genética , Helicobacter pylori/patogenicidad , Helicobacter pylori/fisiología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homología de Secuencia de Aminoácido , Electricidad Estática
8.
EMBO J ; 23(6): 1257-66, 2004 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-15014442

RESUMEN

Autotransporters are virulence-related proteins of Gram-negative bacteria that are secreted via an outer-membrane-based C-terminal extension, the translocator domain. This domain supposedly is sufficient for the transport of the N-terminal passenger domain across the outer membrane. We present here the crystal structure of the in vitro-folded translocator domain of the autotransporter NalP from Neisseria meningitidis, which reveals a 12-stranded beta-barrel with a hydrophilic pore of 10 x 12.5 A that is filled by an N-terminal alpha-helix. The domain has pore activity in vivo and in vitro. Our data are consistent with the model of passenger-domain transport through the hydrophilic channel within the beta-barrel, and inconsistent with a model for transport through a central channel formed by an oligomer of translocator domains. However, the dimensions of the pore imply translocation of the secreted domain in an unfolded form. An alternative model, possibly covering the transport of folded domains, is that passenger-domain transport involves the Omp85 complex, the machinery required for membrane insertion of outer-membrane proteins, on which autotransporters are dependent.


Asunto(s)
Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Neisseria meningitidis/enzimología , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Cefalosporinas/farmacología , Cristalografía por Rayos X , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/aislamiento & purificación , Modelos Moleculares , Datos de Secuencia Molecular , Neisseria meningitidis/genética , Unión Proteica , Pliegue de Proteína , Renaturación de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Serina Endopeptidasas/genética , Serina Endopeptidasas/aislamiento & purificación
9.
J Mol Biol ; 328(5): 1083-9, 2003 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-12729743

RESUMEN

We present an in silico, structure-based approach for design and evaluation of conformationally restricted peptide-vaccines. In particular, we designed four cyclic peptides of ten or 11 residues mimicking the crystallographically observed beta-turn conformation of a predicted immunodominant loop of PorA from Neisseria meningitidis. Conformational correctness and stability of the peptide designs, as evaluated by molecular dynamics simulations, correctly predicted the immunogenicity of the peptides. We observed a peptide-induced functional antibody response that, remarkably, exceeded the response induced by the native protein in outer membrane vesicles, without losing specificity for related strains. The presented approach offers tools for a priori design and selection of peptide-vaccine candidates with full biological activity. This approach could be widely applicable: to outer membrane proteins of Gram-negative bacteria, and to other epitopes in a large range of pathogens.


Asunto(s)
Vacunas de Subunidad/química , Vacunas de Subunidad/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Antibacterianos/biosíntesis , Vacunas Bacterianas/química , Vacunas Bacterianas/inmunología , Reacciones Cruzadas , Diseño de Fármacos , Inmunización , Técnicas In Vitro , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Neisseria meningitidis/genética , Neisseria meningitidis/inmunología , Péptidos Cíclicos/química , Péptidos Cíclicos/genética , Péptidos Cíclicos/inmunología , Porinas/química , Porinas/genética , Porinas/inmunología , Conformación Proteica , Ingeniería de Proteínas , Termodinámica , Vacunas de Subunidad/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA