Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 13156, 2023 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573387

RESUMEN

The evolution of secondary sex-specific traits of dioecious species under abiotic stress conditions has received limited research, especially in the case of Amaranthus palmeri, a fast adapting and highly competing plant. Here, we have examined the interactive effects of abiotic stress on mineral accumulation, chlorophyll a and b content, and the operating capacity of Photosystem II (PSII) in both male and female A. palmeri plants grown under three different intensities of white light, and under N, K or P deficiency. Mineral profiling of the leaves and stems (with inflorescence) highlighted intra- and intersexual differences in their accumulation pattern and mineral associations. Chlorophyll a and chlorophyll b were different between the male and the female plants, being slightly lower in the latter, at high light intensity towards maturity, or under K or P deficiency. Further, slight, although statistically significant differences were recorded in the chlorophyll a/b ratio, which was lower at the higher light intensity in the female, over that in the male, plants towards maturity. Chlorophyll fluorescence parameters, i.e., steady state and maximum fluorescence increased under high light intensity, whereas the PSII operating efficiency decreased in the female plants, indicating reduced PSII capacity. Sex-specific differences in A. palmeri showed a differential response to stressful conditions because of differences in their ontogeny and physiology, and possibly due to the cost of reproduction. We suggest that the breeding system of dioecious species has weaknesses that can be used for the ecological management of dioecious weeds without relying on the use of herbicides.


Asunto(s)
Amaranthus , Clorofila A , Caracteres Sexuales , Fitomejoramiento , Clorofila , Luz , Complejo de Proteína del Fotosistema II , Estrés Fisiológico , Hojas de la Planta
3.
Plant Physiol Biochem ; 148: 166-179, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31962205

RESUMEN

High temperatures and water-deficit stress limit cotton production around the world. Their individual effects on plant physiology and metabolism have been extensively studied, however, their combination has received considerably less attention. To that end, growth chamber experiments were conducted using cotton (Gossypium hirsutum L.) cultivar ST5288B2F and the objectives were to discern physiological and metabolic alterations after heat and water stress application (single or combined) and recovery, during cotton's vegetative stage. Under water stress conditions, leaf physiological parameters were suppressed and changes in carbohydrate levels, due to alterations in sucrose-metabolizing enzymes activities, were observed. Heat stress alone increased carbohydrate content, and activities of sucrose-degrading enzymes, while leaf physiology remained unaffected. The combined stress did exacerbate decreases in leaf water potential and soluble acid invertase activity, but the rest of the responses were similar to those of water stress. After stress alleviation, leaf physiological parameters of water-stressed plants did not manage to recover and substantial decreases were observed in leaf starch levels and activities of sucrose-cleaving enzymes, while the majority of parameters of heat-shocked plants returned to control levels. Recovery of the plants subjected to the combined stress was comparable to that of water-stressed plants, but significant differences were observed in carbohydrate levels and sucrose synthase activity. Our study demonstrated that under combined stress and post-stress conditions, water stress was the dominant factor affecting cotton leaf physiology and sucrose metabolism, highlighting however, the unique responses of some traits that could not be deduced from the additive effects of the single stresses.


Asunto(s)
Gossypium , Calor , Hojas de la Planta , Estrés Fisiológico , Sacarosa , Deshidratación , Gossypium/fisiología , Hojas de la Planta/fisiología , Sacarosa/metabolismo
4.
Plant Physiol Biochem ; 115: 408-417, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28441628

RESUMEN

Potassium (K) plays important roles in the metabolism of carbon (C) and nitrogen (N), but studies of K deficiency affecting C-N balance are lacking. This study explored the influence of K deficiency on C-N interaction in cotton leaves by conducting a field experiment with cotton cultivar DP0912 under two K rates (K0: 0 kg K2O ha-1 and K67: 67 kg K2O ha-1) and a controlled environment experiment with K-deficient solution (K1: 0 mM K+) and K-sufficient solution (K2: 6 mM K+). The results showed that leaf K content, leaf number, leaf area, boll number, reproductive dry weight and total dry weight were significant lower under K deficiency (K0 or K1). Lower total chlorophyll content and Chl a/b ratio, and decreased Pn along with lower Gs and higher Ci were measured under K deficiency, suggesting that the decrease in Pn was resulted from non-stomatal limitation. Leaf glucose, fructose, sucrose and starch contents were higher under K deficiency, because lower sucrose export was detected in phloem. Although leaf nitrate and ammonium contents significantly decreased, free amino acid content was increased by 40-63% under K deficiency, since lower amino acid export was also measured in phloem. K deficiency also induced lower soluble protein content in leaves. Leaf ATP level was significantly increased under K deficiency, indicating ATP utilization was lower, so that less energy was supplied to C and N metabolism. The ratio of soluble sugar to free amino acid and the C/N ratio markedly increased under K deficiency, and one reason was that the phloem export reduced more prominent for sucrose (54.6-78.0%) than amino acid (36.7-85.4%) under K deficiency. In addition, lower phosphoenolpyruvate carboxylase activity limited malate and citrate biosynthesis under K deficiency, causing a decrease of C flux into the amino acids, which was not beneficial for maintaining C-N balance. Sucrose phosphate synthase and nitrate reductase activities were lower under K deficiency, which would limit sucrose biosynthesis and nitrate assimilation. This was another factor altering soluble sugar to free amino acid ratio and C/N ratio in the K-deficient leaves.


Asunto(s)
Carbono/metabolismo , Gossypium/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Potasio/metabolismo , Clorofila/metabolismo , Gossypium/fisiología , Fotosíntesis/fisiología
5.
Plant Physiol Biochem ; 101: 113-123, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26874296

RESUMEN

The nitrogen (N) metabolism of the leaf subtending the cotton boll (LSCB) was studied with two cotton (Gossypium hirsutum L.) cultivars (Simian 3, low-K tolerant; Siza 3, low-K sensitive) under three levels of potassium (K) fertilization (K0: 0 g K2O plant(-1), K1: 4.5 K2O plant(-1) and K2: 9.0 g K2O plant(-1)). The results showed that total dry matter increased by 13.1-27.4% and 11.2-18.5% under K supply for Simian 3 and Siza 3. Boll biomass and boll weight also increased significantly in K1 and K2 treatments. Leaf K content, leaf N content and nitrate (NO3(-)) content increased with increasing K rates, and leaf N content or NO3(-) content had a significant positive correlation with leaf K content. Free amino acid content increased in the K0 treatment for both cultivars, due to increased protein degradation caused by higher protease and peptidase activities, resulting in lower protein content in the K0 treatment. The critical leaf K content for free amino acid and soluble protein content were 14 mg g(-1) and 15 mg g(-1) in Simian 3, and 17 mg g(-1) and 18 mg g(-1) in Siza 3, respectively. Nitrate reductase (NR), glutamic-oxaloace transaminase (GOT) and glutamic-pyruvic transaminase (GPT) activities increased in the K1 and K2 treatments for both cultivars, while glutamine synthetase (GS) and glutamate synthase (GOGAT) activities increased under K supply treatments only for Siza 3, and were not affected in Simian 3, indicating that this was the primary difference in nitrogen-metabolizing enzymes activities for the two cultivars with different sensitivity to low-K.


Asunto(s)
Fertilizantes , Gossypium/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Potasio/metabolismo , Potasio/farmacología
6.
Funct Plant Biol ; 42(9): 909-919, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32480733

RESUMEN

Global warming has the potential to increase air temperatures by 1.8 to 4.0°C by the end of the 21st century. In order to reveal the effects of increased temperatures on the sucrose metabolism and cellulose synthesis in cotton fibre during its flowering and boll formation stage, field experiments with elevated temperature regimes (32.6/28.6°C, mean daytime/night-time temperature during flowering and boll formation stage during 2010-12, the same below) and ambient temperature regimes (30.1/25.8°C) were conducted. Activities of sucrose synthase and acid/alkaline invertase decreased under elevated temperature in fibre, but activities of sucrose phosphate synthase were increased. Callose content increased, but sucrose content decreased within the cotton fibre under elevated temperature. The disparity of callose content and sucrose content between the two temperature regimes decreased with the number of days post anthesis, indicating that the effects of elevated temperature on both sucrose content and cellulose content were diminished as the boll matured. Due to the dynamics of the carbohydrate content and associated enzyme activities, we hypothesise that the restrained sucrose metabolism and cellulose biosynthesis under elevated temperatures were mainly attributed to the changed activities of sucrose synthase and invertase. Furthermore, 32.6/28.6°C had a negative effect on the cellulose synthesis compared with 30.1/25.8°C.

7.
PLoS One ; 9(8): e105088, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25133819

RESUMEN

Cotton-rapeseed or cotton-wheat double cropping systems are popular in the Yangtze River Valley and Yellow River Valley of China. Due to the competition of temperature and light resources during the growing season of double cropping system, cotton is generally late-germinating and late-maturing and has to suffer from the coupling of declining temperature and low light especially in the late growth stage. In this study, late planting (LP) and shading were used to fit the coupling stress, and the coupling effect on fiber cellulose synthesis was investigated. Two cotton (Gossypium hirsutum L.) cultivars were grown in the field in 2010 and 2011 at three planting dates (25 April, 25 May and 10 June) each with three shading levels (normal light, declined 20% and 40% PAR). Mean daily minimum temperature was the primary environmental factor affected by LP. The coupling of LP and shading (decreased cellulose content by 7.8%-25.5%) produced more severe impacts on cellulose synthesis than either stress alone, and the effect of LP (decreased cellulose content by 6.7%-20.9%) was greater than shading (decreased cellulose content by 0.7%-5.6%). The coupling of LP and shading hindered the flux from sucrose to cellulose by affecting the activities of related cellulose synthesis enzymes. Fiber cellulose synthase genes expression were delayed under not only LP but shading, and the coupling of LP and shading markedly postponed and even restrained its expression. The decline of sucrose-phosphate synthase activity and its peak delay may cause cellulose synthesis being more sensitive to the coupling stress during the later stage of fiber secondary wall development (38-45 days post-anthesis). The sensitive difference of cellulose synthesis between two cultivars in response to the coupling of LP and shading may be mainly determined by the sensitiveness of invertase, sucrose-phosphate synthase and cellulose synthase.


Asunto(s)
Pared Celular/metabolismo , Celulosa/biosíntesis , Fibra de Algodón , Gossypium/metabolismo , Gossypium/fisiología , Luz , Glucosiltransferasas/metabolismo , Gossypium/enzimología , Temperatura , Factores de Tiempo
8.
Plant Sci ; 223: 79-98, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24767118

RESUMEN

The work explored sucrose metabolism in the leaves subtending the cotton boll (SBL) and its role in boll weight after waterlogging in cotton. Results showed that net photosynthesis rate (Pn), relative water content, contents of Chlorophyll a and Chlorophyll b, initial ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) activity and cytosolic fructose-1, 6-bisphosphatase (cy-FBPase) activity decreased with waterlogging in the SBL on fruiting branches 2-3 (FB2-3) and FB6-7. Activities of sucrose synthase (SuSy) and sucrose phosphate synthase (SPS) increased to the maximum up to 6 days of waterlogging then decreased with prolonged waterlogging. Rubisco activation and specific leaf weight increased and gene expressions of SuSy, SPS and rubisco activase (RCA) were all up-regulated with the duration of waterlogging, especially for the SBL on FB6-7. The induction of activity and gene expression of SuSy was most significant indicating its crucial role in sucrose metabolism after waterlogging. For the SBL in the later period of boll development on upper FB10-11 and FB14-15, the pattern seemed opposite to that of FB2-3 and FB6c7 as compensation effect in vegetative growth existed. Correlation analysis revealed that initial Rubisco activity and cy-FBPase activity were the main limitation to Pn reduction after waterlogging. Reduction in Pn, sucrose transformation rate and initial Rubisco activity directly decrease boll weight in waterlogged cotton. Besides the role in sucrose metabolism after waterlogging, SuSy also had a positive significant correlation with the duration of rapid-accumulation period for seed fiber weight (P<0.05). These findings elucidated mechanisms to waterlogging that affected seed fiber weight, which resulted from alteration in carbohydrates, enzymes and genes.


Asunto(s)
Fibra de Algodón , Flores/fisiología , Gossypium/anatomía & histología , Gossypium/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Sacarosa/metabolismo , Agua/fisiología , Metabolismo de los Hidratos de Carbono/genética , Clorofila/metabolismo , Clorofila A , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Gossypium/enzimología , Gossypium/genética , Tamaño de los Órganos , Fotosíntesis/genética , Hojas de la Planta/enzimología , Tallos de la Planta/crecimiento & desarrollo , Almidón/metabolismo , Tiempo (Meteorología)
9.
J Plant Physiol ; 170(5): 489-96, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23246028

RESUMEN

Previous investigations have demonstrated that photosystem II (PSII) thermostability acclimates to prior exposure to heat and drought, but contrasting results have been reported for cotton (Gossypium hirsutum). We hypothesized that PSII thermotolerance in G. hirsutum would acclimate to environmental conditions during the growing season and that there would be differences in PSII thermotolerance between commercially-available U.S. cultivars. To this end, three cotton cultivars were grown under dryland conditions in Tifton Georgia, and two under irrigated conditions in Marianna Arkansas. At Tifton, measurements included PSII thermotolerance (T15, the temperature causing a 15% decline in maximum quantum yield), leaf temperatures, air temperatures, midday (1200 to 1400h) leaf water potentials (ΨMD), leaf-air vapor pressure deficit (VPD), actual quantum yield (ΦPSII) and electron transport rate through PSII (ETR) on three sample dates. At Marianna, T15 was measured on two sample dates. Optimal air and leaf temperatures were observed on all sample dates in Tifton, but PSII thermotolerance increased with water deficit conditions (ΨMD=-3.1MPa), and ETR was either unaffected or increased under water-stress. Additionally, T15 for PHY 499 was ∼5°C higher than for the other cultivars examined (DP 0912 and DP 1050). The Marianna site experienced more extreme high temperature conditions (20-30 days Tmax≥35°C), and showed an increase in T15 with higher average Tmax. When average T15 values for each location and sample date were plotted versus average daily Tmax, strong, positive relationships (r(2) from .954 to .714) were observed between Tmax and T15. For all locations T15 was substantially higher than actual field temperature conditions. We conclude that PSII thermostability in G. hirsutum acclimates to pre-existing environmental conditions; PSII is extremely tolerant to high temperature and water-deficit stress; and differences in PSII thermotolerance exist between commercially-available cultivars.


Asunto(s)
Aclimatación/fisiología , Agricultura , Gossypium/genética , Complejo de Proteína del Fotosistema II/metabolismo , Estaciones del Año , Temperatura , Clorofila/metabolismo , Clorofila A , Fluorescencia , Genotipo , Microclima , Hojas de la Planta/fisiología , Estabilidad Proteica , Lluvia , Agua
10.
Plant Signal Behav ; 6(7): 930-3, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21628998

RESUMEN

Reproductive development in sexual plants is substantially more sensitive to high temperature stress than vegetative development, resulting in negative implications for food and fiber production under the moderate temperature increases projected to result from global climate change. High temperature exposure either during early pollen development or during the progamic phase of pollen development will negatively impact pollen performance and reproductive output; both phases of pollen development are considered exceptionally sensitive to moderate heat stress. However, moderately elevated temperatures either before or during the progamic phase can limit fertilization by negatively impacting important pollen pistil interactions required for successful pollen tube growth toward the ovules. This minireview identifies the impacts of heat stress on pollen-pistil interactions and sexual reproduction in angiosperms. A special emphasis is placed on the biochemical response of the pistil to moderately high temperature and the resultant influence on in vivo pollen performance and fertilization.


Asunto(s)
Flores/fisiología , Calor , Magnoliopsida/fisiología , Polen/fisiología , Fertilización/fisiología
11.
J Plant Physiol ; 168(11): 1168-75, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21256621

RESUMEN

It has recently been reported that high temperature slows in vivo pollen tube growth rates in Gossypium hirsutum pistils under field conditions. Although numerous physical and biochemical pollen-pistil interactions are necessary for in vivo pollen tube growth to occur, studies investigating the influence of heat-induced changes in pistil biochemistry on in vivo pollen tube growth rates are lacking. We hypothesized that high temperature would alter diurnal pistil biochemistry and that pollen tube growth rates would be dependent upon the soluble carbohydrate content of the pistil during pollen tube growth. G. hirsutum seeds were sown on different dates to obtain flowers exposed to contrasting ambient temperatures but at the same developmental stage. Diurnal pistil measurements included carbohydrate balance, glutathione reductase (GR; EC 1.8.1.7), soluble protein, superoxide dismutase (SOD; EC 1.15.1.1), NADPH oxidase (NOX; EC 1.6.3.1), adenosine triphosphate (ATP), and water-soluble calcium. Soluble carbohydrate levels in cotton pistils were as much as 67.5% lower under high temperature conditions (34.6 °C maximum air temperature; August 4, 2009) than under cooler conditions (29.9 °C maximum air temperature; August 14, 2009). Regression analysis revealed that pollen tube growth rates were highly correlated with the soluble carbohydrate content of the pistil during pollen tube growth (r² = 0.932). Higher ambient temperature conditions on August 4 increased GR activity in the pistil only during periods not associated with in vivo pollen tube growth; pistil protein content declined earlier in the day under high temperatures; SOD and NOX were unaffected by either sample date or time of day; pistil ATP and water soluble calcium were unaffected by the warmer temperatures. We conclude that moderate heat stress significantly alters diurnal carbohydrate balance in the pistil and suggest that pollen tube growth rate through the style may be limited by soluble carbohydrate supply in the pistil.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Carbohidratos/análisis , Flores/química , Gossypium/crecimiento & desarrollo , Calor , Tubo Polínico/crecimiento & desarrollo , Adenosina Trifosfato/análisis , Calcio/análisis , Flores/enzimología , Flores/crecimiento & desarrollo , Glutatión Reductasa/análisis , Gossypium/química , Gossypium/enzimología , NADPH Oxidasas/análisis , Proteínas de Plantas/análisis , Polinización , Estrés Fisiológico , Superóxido Dismutasa/análisis
12.
J Plant Physiol ; 168(5): 441-8, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20832140

RESUMEN

For Gossypium hirsutum pollination, germination, and pollen tube growth must occur in a highly concerted fashion on the day of flowering for fertilization to occur. Because reproductive success could be influenced by the photosynthetic activity of major source leaves, we hypothesized that increased temperatures under field conditions would limit fertilization by inhibiting diurnal pollen tube growth through the style and decreasing subtending leaf photosynthesis. To address this hypothesis, G. hirsutum seeds were sown on different dates to obtain flowers exposed to contrasting ambient temperatures while at the same developmental stage (node 8 above the cotyledons). Collection and measurement were conducted at 06:00, 09:00, 12:00, 15:00, and 18:00h on August 4 (34.6°C maximum air temperature) and 14, 2009 (29.9°C maximum air temperature). Microclimate measurements included photosynthetically active radiation, relative humidity, and air temperature. Pistil measurements included pistil surface temperature, pollen germination, pollen tube growth through the style, fertilization efficiency, fertilized ovule number, and total number of ovules per ovary. Subtending leaf measurements included leaf temperature, photosynthesis, and stomatal conductance. Under high temperatures the first measurable pollen tube growth through the style was observed earlier in the day (12:00h) than under cooler conditions (15:00h). Also, high temperature resulted in slower pollen tube growth through the style (2.05mmh(-1)) relative to cooler conditions (3.35mmh(-1)), but there were no differences in fertilization efficiency, number of fertilized ovules, or ovule number. There was no effect of sampling date on diurnal photosynthetic patterns, where the maximum photosynthetic rate was observed at 12:00h on both dates. It is concluded that, of the measured physiological and reproductive processes, pollen tube growth rate showed the greatest sensitivity to high temperature under field conditions.


Asunto(s)
Ritmo Circadiano , Gossypium/crecimiento & desarrollo , Calor , Polen , Germinación , Gossypium/fisiología , Fotosíntesis , Hojas de la Planta/fisiología
13.
Physiol Plant ; 138(3): 268-77, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20002327

RESUMEN

Numerous studies have illustrated the need for antioxidant enzymes in acquired photosynthetic thermotolerance, but information on their possible role in promoting innate thermotolerance is lacking. We investigated the hypothesis that genotypic differences in source leaf photosynthetic thermostability would be dependent upon prestress capacity for antioxidant protection of the photosynthetic apparatus in Gossypium hirsutum. To test this hypothesis, thermosensitive (cv. ST4554) and reportedly thermotolerant (cv. VH260) G. hirsutum plants were exposed to control (30/20 degrees C) or high-day temperature (38/20 degrees C) conditions during flowering and source leaf gas exchange, chlorophyll content and maximum photochemical efficiency (F(v)/F(m)) were measured for each treatment. The relationship between source leaf thermostability and prestress antioxidant capacity was quantified by monitoring the actual quantum yield response of photosystem II (PSII) (Phi(PSII)) to a range of temperatures for both cultivars grown under the control temperature regime and measuring antioxidant enzyme activity for those same leaves. VH260 was more thermotolerant than ST4554 as evidenced by photosynthesis and F(v)/F(m) being significantly lower under high temperature for ST4554 but not VH260. Under identical growth conditions, VH260 had significantly higher optimal and threshold temperatures for Phi(PSII) and glutathione reductase (GR; EC 1.8.1.7) activity than ST4554, and innate threshold temperature was dependent upon endogenous GR and superoxide dismutase (SOD; EC 1.15.1.1) activity. We conclude that maintaining a sufficient antioxidant enzyme pool prior to heat stress is an innate mechanism for coping with rapid leaf temperature increases that commonly occur under field conditions.


Asunto(s)
Antioxidantes/metabolismo , Genotipo , Gossypium/fisiología , Calor , Fotosíntesis/fisiología , Clorofila/análisis , Glutatión Reductasa/metabolismo , Gossypium/genética , Gossypium/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Estrés Fisiológico , Superóxido Dismutasa/metabolismo
14.
Physiol Plant ; 137(2): 125-38, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19656331

RESUMEN

Using in vitro systems, numerous authors have cited the sensitivity of pollen tube growth to high temperature as a major cause of low yields for crops with valuable reproductive structures. We investigated the hypothesis that in vivo fertilization efficiency would be negatively affected by heat stress-induced changes in energy reserves and calcium-mediated oxidative status in the pistil. Gossypium hirsutum plants exposed to optimal (30/20 degrees C) or high day temperature (38/20 degrees C) conditions during flowering were analyzed for fertilization efficiency via UV microscopic observation of pollen tube-containing ovules and for soluble carbohydrates, adenosine triphosphate (ATP), calcium, antioxidant enzyme activity and NADPH oxidase (NOX; EC 1.6.3.1) activity in the pistil. Leaf measurements included gas exchange, chlorophyll content, quantum efficiency and ATP content of the subtending leaf on the day of anthesis. In the pistil fertilization efficiency, soluble carbohydrates, ATP content and NOX activity declined significantly, whereas water soluble calcium and glutathione reductase (EC 1.8.1.7) activity increased, and superoxide dismutase (EC 1.15.1.1) activity remained unchanged. In leaves, heat stress decreased photosynthesis, quantum efficiency and chlorophyll content, but increased stomatal conductance. We conclude that decreased source leaf activity either inhibits pollen development, tube growth through the style or guidance to the ovules as a result of an insufficient energy supply to the developing pistil. We further conclude that a calcium-augmented antioxidant response in heat-stressed pistils interferes with enzymatic superoxide production needed for normal pollen tube growth and fertilization of the ovule.


Asunto(s)
Flores/metabolismo , Gossypium/metabolismo , Calor , Adenosina Trifosfato/análisis , Antioxidantes/metabolismo , Calcio/metabolismo , Carbohidratos/análisis , Dióxido de Carbono , Clorofila/metabolismo , Fertilización , Fluorescencia , Glutatión Reductasa/metabolismo , NADPH Oxidasas/metabolismo , Estrés Oxidativo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA