Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Biomolecules ; 13(2)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36830572

RESUMEN

The materials used for the preparation of electrospun mats exhibit a large variety. Among them, cyclodextrins (CDs) and their derivatives have received thorough attention. Herein, we focus on the preparation of electrospun fibers based on biodegradable cyclodextrin-oligolactide (CDLA) derivatives, which may be qualified as polymer-free cyclodextrin. CDLA was prepared by ring opening of L-lactide initiated by the ß-cyclodextrin. A clear structural image of the high-purity CDLA product was proved by MALDI MS. Preparation of the electrospun mats was optimized by taking into consideration the electrospinning parameters such as applied voltage, needle-to-collector distance, flow rate, the concentration of cyclodextrin solutions, and solvent type. The obtained electrospun fibers were morphologically characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). SEM allowed the optimization of the electrospinning process to obtain beadless fibers with submicronic diameters. Further analysis by TEM and SAXS revealed the inner structural features of the CDLA-based filaments. Our results showed that the high purity CDLA materials, structurally well-defined at the molecular level, are suitable for the preparation of electrospun mats by using dimethylformamide or a water/acetonitrile mixture as electrospinning solvents, similar to lower molecular weight commercial cyclodextrin derivatives.


Asunto(s)
Ciclodextrinas , Ciclodextrinas/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Polímeros/química , Solventes/química
2.
Materials (Basel) ; 16(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36769993

RESUMEN

This work presents an energy-efficient, cheap, and rapid production method of a metal-ceramic preform with open porosity suitable for liquid metal infiltration and filtration applications. It is based on cold isostatic pressing of a mixture of relatively hard Ni and Al2O3 powders with the addition of small amount of Al powders, acting as a binding agent. Open porosity is primarily controlled by Al2O3 particles partially separating Ni particles from mutual contacts. Cold isostatic pressed green compacts were subjected to thermal oxidation by heating in air to 600 °C, 700 °C, and 800 °C. The weight gain and open porosity of oxidized compacts were examined. The chemical composition and microstructure were analyzed by SEM-EDS and XRD techniques. The stability of preforms and the effect of thermal cycling on the open porosity were tested by thermal cycling in an inert Ar atmosphere in the temperature range up to 800 °C. It appeared that, in addition to NiO being an expected product of oxidation, Ni aluminides and spinel particles also played an important role in inter-particle bonding formation. Ni-NiO porous composites resist chemical corrosion and exhibit structural and chemical stability at higher temperatures and admixed Al2O3 particles do not deteriorate them. After subsequent infiltration with Al, it can offer a lower density than other materials, which could result in lower energy consumption, which is highly needed in industries such as the automotive industry.

3.
Materials (Basel) ; 15(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35806664

RESUMEN

Packaging for fresh fruits and vegetables with additional properties such as inhibition of pathogens grown can reduce food waste. With its biodegradability, poly(ε-caprolactone) (PCL) is a good candidate for packaging material, especially in the form of an electrospun membrane. The preparation of nonwoven fabric of PCL loaded with food additive, antimicrobial nisin makes them an active packaging with antispoilage properties. During the investigation of the nonwoven fabric mats, different concentrations of nisin were obtained from the solution of PCL via the electrospinning technique. The obtained active porous PCL loaded with varying concentrations of nisin inhibited the growth of Staphylococcus aureus and Escherichia coli. Packages made of PCL and PCL/nisin fibrous mats demonstrated a prolongation of the fruits' freshness, improving their shelf life and, consequently, their safety.

4.
Materials (Basel) ; 14(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34832491

RESUMEN

Copper-graphite composites are promising functional materials exhibiting application potential in electrical equipment and heat exchangers, due to their lower expansion coefficient and high electrical and thermal conductivities. Here, copper-graphite composites with 10-90 vol. % graphite were prepared by hot isostatic pressing, and their microstructure and coefficient of thermal expansion (CTE) were experimentally examined. The CTE decreased with increasing graphite volume fraction, from 17.8 × 10-6 K-1 for HIPed pure copper to 4.9 × 10-6 K-1 for 90 vol. % graphite. In the HIPed pure copper, the presence of cuprous oxide was detected by SEM-EDS. In contrast, Cu-graphite composites contained only a very small amount of oxygen (OHN analysis). There was only one exception, the composite with 90 vol. % graphite contained around 1.8 wt. % water absorbed inside the structure. The internal stresses in the composites were released during the first heating cycle of the CTE measurement. The permanent prolongation and shape of CTE curves were strongly affected by composition. After the release of internal stresses, the CTE curves of composites did not change any further. Finally, the modified Schapery model, including anisotropy and the clustering of graphite, was used to model the dependence of CTE on graphite volume fraction. Modeling suggested that the clustering of graphite via van der Waals bonds (out of hexagonal plane) is the most critical parameter and significantly affects the microstructure and CTE of the Cu-graphite composites when more than 30 vol. % graphite is present.

5.
Polymers (Basel) ; 13(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34372102

RESUMEN

In this study, fibrous membranes from recycled-poly(ethylene terephthalate)/silk fibroin (r-PSF) were prepared by electrospinning for filtration applications. The effect of silk fibroin on morphology, fibers diameters, pores size, wettability, chemical structure, thermo-mechanical properties, filtration efficiency, filtration performance, and comfort properties such as air and water vapor permeability was investigated. The filtration efficiency (FE) and quality factor (Qf), which represents filtration performance, were calculated from penetration through the membranes using aerosol particles ranging from 120 nm to 2.46 µm. The fiber diameter influenced both FE and Qf. However, the basis weight of the membranes has an effect, especially on the FE. The prepared membranes were classified according to EN149, and the most effective was assigned to the class FFP1 and according to EN1822 to the class H13. The impact of silk fibroin on the air permeability was assessed. Furthermore, the antibacterial activity against bacteria S. aureus and E. coli and biocompatibility were evaluated. It is discussed that antibacterial activity depends not only on the type of used materials but also on fibrous membranes' surface wettability. In vitro biocompatibility of the selected samples was studied, and it was proven to be of the non-cytotoxic effect of the keratinocytes (HaCaT) after 48 h of incubation.

6.
Nanomaterials (Basel) ; 11(4)2021 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-33916638

RESUMEN

Diclofenac sodium salt (DSS)-loaded electrospun nanofiber mats on the base of poly(ε-caprolactone) (PCL) were investigated as biocompatible nanofibrous mats for medical applications with the ability to inhibit bacterial infections. The paper presents the characteristics of fibrous mats made by electrospinning and determines the effect of medicament on the fiber morphology, chemical, mechanical and thermal properties, as well as wettability. PCL and DSS-loaded PCL nanofibrous mats were characterized using scanning electron microscopy, transmission electron microscopy, attenuated total reflectance-Fourier transform infrared spectrometry, dynamic mechanical analysis, and contact angle measurements. Electron paramagnetic resonance measurements confirmed the lifetime of DSS before and after application of high voltage during the electrospinning process. In vitro biocompatibility was studied, and it was proved to be of good viability with ~92% of the diploid human cells culture line composed of lung fibroblast (MRC 5) after 48 h of incubation. Moreover, the significant activity of DSS-loaded nanofibers against cancer cells, Ca Ski and HeLa, was established as well. It was shown that 12.5% (m/V) is the minimal concentration for antibacterial activity when more than 99% of Escherichia coli (Gram-negative) and 99% of Staphylococcus aureus (Gram-positive) have been exterminated.

7.
Materials (Basel) ; 13(23)2020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33260595

RESUMEN

The current study reflects the demand to mitigate the environmental issues caused by the waste from the agriculture and food industry. The crops that do not meet the supply chain requirements and waste from their processing are overfilling landfills. The mentioned wastes contain cellulose, which is the most abundant carbon precursor. Therefore, one of the possibilities of returning such waste into the life cycle could be preparing the activated carbon through an eco-friendly and simple route. Herein, the carrot pulp from the waste was used. Techniques such as thermogravimetric analysis (TGA), elemental analysis (EA), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and x-ray diffraction (XRD) were used to investigate the thermal treatment effect during the carbon material preparation. The development of microstructure, phase formation, and chemical composition of prepared material was evaluated. The obtained carbon material was finally tested for water cleaning from a synthetic pollutant such as rhodamine B and phloxine B. An adsorption mechanism was proposed on the base of positron annihilation lifetime spectroscopy (PALS) results and attributed to the responsible interactions. It was shown that a significant carbon sorbent from the organic waste for water purification was obtained.

8.
Materials (Basel) ; 13(16)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823655

RESUMEN

Silk fibroin is a biocompatible, non-toxic, mechanically robust protein, and it is commonly used and studied as a material for biomedical applications. Silk fibroin also gained particular interest as a drug carrier vehicle, and numerous silk formats have been investigated for this purpose. Herein, we have prepared electrospun nanofibers from pure silk fibroin and blended silk fibroin/casein, followed by the incorporation of an anti-inflammatory drug, diclofenac. Casein serves as an excipient in pharmaceutical products and has a positive effect on the gradual release of drugs. The characteristics of the investigated composites were estimated by scanning electron microscope, transmission electron microscope, thermogravimetric analysis, and a lifetime of diclofenac by electron paramagnetic resonance analysis. The cumulative release in vitro of diclofenac sodium salt, together with the antiproliferative effect of diclofenac sodium salt-loaded silk nanofibers against the growth of two cancer cell lines, are presented and discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...