Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 62(22): 5954-5958, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37706948

RESUMEN

Ghost imaging can be used to detect objects in a nonstationary environment or in the presence of variable ambient light, making it attractive when conventional imaging methods are ineffective. However, the conventional ghost imaging algorithm is susceptible to temporal fluctuations in the detected signal. In this work, we propose a polarization-multiplexed auxiliary laser channel propagating along the same optical path with the main one. The signal in the auxiliary channel is used as a reference and allows the elimination of signal disturbance. A quantitative analysis and comparison of the proposed method's performance to the high-pass filtering method are demonstrated. For an illumination pattern refresh rate of 10 Hz, effective suppression of bucket signal fluctuations has been experimentally demonstrated. For a disturbance frequency from 1 Hz to 10 Hz, the auxiliary channel method demonstrated a ghost image Pearson correlation coefficient (PCC) of not less than 0.70, while the high-pass filtering method showed a PCC sharp drop from 0.65 to 0.02.

2.
Sci Rep ; 10(1): 9463, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32528142

RESUMEN

The state-of-art broadband THz sources can contribute to the development of short-range 6G communications. This paper has demonstrated the feasibility of forming the controllable sequence of THz subpulses in the temporal domain and the corresponding quasidiscrete spectrum by the interference of two THz pulses with an exponential chirp. Moreover, due to small time delay between these pulses the temporal and spectral structures are similar to each other (so-called "linkage relation"). This will benefit information encoding in the THz range. The calculated metrics for the prototype communication channel based on the proposed method are competitive with existing short-range THz CW channels.

3.
Nanoscale ; 12(4): 2638-2647, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31939986

RESUMEN

Black phosphorus (BP) in its monolayer form called phosphorene is thought of as a successor of graphene and is of great interest for (opto)electronic applications. A quantitative and scalable method for the synthesis of (mono-)few-layer phosphorene has been an outstanding challenge due to the process irreproducibility and environmental degradation capability of the BP. Here, we report a facile controlled electrochemical exfoliation method for the preparation of a few-layer phosphorene (FP) with nearly 100% yield. Our approach relies on the low-potential influence in anhydrous and oxygen-free low-boiling acetonitrile (AN) and N,N-dimethylformamide (DMF) using alkylammonium ions. Herein, intercalation of positive ions into BP interlayers occurred with a minimum potential of -2.95 V in DMF and -2.85 V in AN and the non-damaging and highly accurate electrochemical exfoliation lasted at -3.8 V. A variety of analytical methods have revealed that in particular DMF-based exfoliation results in high-quality phosphorene of 1-5 layers with good crystallinity and lateral sizes up to tens of micrometers. Moreover, assurance of the oxygen- and water-free environment allowed us to minimize the surface oxidation of BP and, consequently, exfoliated phosphorene. We pioneer an effective and reproducible printing transfer of electrochemically exfoliated phosphorene films onto various flexible and rigid substrates. The surfactant-free process of exfoliation allowed assembly and transfer of thin films based on FP. The phosphorene-based films characterized as direct gap semiconductors have a layer-number-dependent bandgap with a tuning range larger than that of other 2D materials. We show that on varying the films' thickness, it is possible to modify their optical properties, which is a significant advantage for compact and switchable optoelectronic components.

4.
Nanoscale Res Lett ; 14(1): 225, 2019 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-31289955

RESUMEN

Time-resolved terahertz spectroscopy has become a common method both for fundamental and applied studies focused on improving the quality of human life. However, the issue of finding materials applicable in these systems is still relevant. One of the appropriate solution is 2D materials. Here, we demonstrate the transmission properties of unique graphene-based structures with iron trichloride FeCl3 dopant on glass, sapphire and Kapton polyimide film substrates that previously were not investigated in the framework of the above-described problems in near infrared and THz ranges. We also show properties of a thin tungsten disulfide WS2 film fabricated from liquid crystal solutions transferred to a polyimide and polyethylene terephthalate substrates. The introduction of impurities, the selection of structural dimensions and the use of an appropriate substrate for modified 2D layered materials allow to control the transmission of samples for both the terahertz and infrared ranges, which can be used for creation of effective modulators and components for THz spectroscopy systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...