Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Curr Issues Mol Biol ; 44(3): 1294-1315, 2022 Mar 16.
Article En | MEDLINE | ID: mdl-35723310

Hepatic cells are sensitive to internal and external signals. Ethanol is one of the oldest and most widely used drugs in the world. The focus on the mechanistic engine of the alcohol-induced injury has been in the liver, which is responsible for the pathways of alcohol metabolism. Ethanol undergoes a phase I type of reaction, mainly catalyzed by the cytoplasmic enzyme, alcohol dehydrogenase (ADH), and by the microsomal ethanol-oxidizing system (MEOS). Reactive oxygen species (ROS) generated by cytochrome (CYP) 2E1 activity and MEOS contribute to ethanol-induced toxicity. We aimed to: (1) Describe the cellular, pathophysiological and clinical effects of alcohol misuse on the liver; (2) Select the biomarkers and analytical methods utilized by the clinical laboratory to assess alcohol exposure; (3) Provide therapeutic ideas to prevent/reduce alcohol-induced liver injury; (4) Provide up-to-date knowledge regarding the Corona virus and its affect on the liver; (5) Link rare diseases with alcohol consumption. The current review contributes to risk identification of patients with alcoholic, as well as non-alcoholic, liver disease and metabolic syndrome. Additional prevalence of ethnic, genetic, and viral vulnerabilities are presented.

2.
Exp Mol Pathol ; 126: 104750, 2022 06.
Article En | MEDLINE | ID: mdl-35192844

The present review is based on the research presented at the symposium dedicated to the legacy of the two scientists that made important discoveries in the field of alcohol-induced liver damage: Professors C.S. Lieber and S.W. French. The invited speakers described pharmacological, toxicological and patho-physiological effects of alcohol misuse. Moreover, genetic biomarkers determining adverse drug reactions due to interactions between therapeutics used for chronic or infectious diseases and alcohol exposure were discussed. The researchers presented their work in areas of alcohol-induced impairment in lipid protein trafficking and endocytosis, as well as the role of lipids in the development of fatty liver. The researchers showed that alcohol leads to covalent modifications that promote hepatic dysfunction and injury. We concluded that using new advanced techniques and research ideas leads to important discoveries in science.


Liver Diseases, Alcoholic , Translational Research, Biomedical , Ethanol , Humans , Liver , Liver Diseases, Alcoholic/genetics
3.
Exp Mol Pathol ; 102(1): 162-180, 2017 02.
Article En | MEDLINE | ID: mdl-28077318

This paper is based upon the "8th Charles Lieber's Satellite Symposium" organized by Manuela G. Neuman at the Research Society on Alcoholism Annual Meeting, on June 25, 2016 at New Orleans, Louisiana, USA. The integrative symposium investigated different aspects of alcohol-induced liver disease (ALD) as well as non-alcohol-induced liver disease (NAFLD) and possible repair. We revealed the basic aspects of alcohol metabolism that may be responsible for the development of liver disease as well as the factors that determine the amount, frequency and which type of alcohol misuse leads to liver and gastrointestinal diseases. We aimed to (1) describe the immuno-pathology of ALD, (2) examine the role of genetics in the development of alcoholic hepatitis (ASH) and NAFLD, (3) propose diagnostic markers of ASH and non-alcoholic steatohepatitis (NASH), (4) examine age and ethnic differences as well as analyze the validity of some models, (5) develop common research tools and biomarkers to study alcohol-induced effects, 6) examine the role of alcohol in oral health and colon and gastrointestinal cancer and (7) focus on factors that aggravate the severity of organ-damage. The present review includes pre-clinical, translational and clinical research that characterizes ALD and NAFLD. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD with simple fatty infiltrations and chronic alcoholic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes and cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human deficiency virus were discussed. Dysregulation of metabolism, as a result of ethanol exposure, in the intestine leads to colon carcinogenesis. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota have been suggested. The clinical aspects of NASH, as part of the metabolic syndrome in the aging population, have been presented. The symposium addressed mechanisms and biomarkers of alcohol induced damage to different organs, as well as the role of the microbiome in this dialog. The microbiota regulates and acts as a key element in harmonizing immune responses at intestinal mucosal surfaces. It is known that microbiota is an inducer of proinflammatory T helper 17 cells and regulatory T cells in the intestine. The signals at the sites of inflammation mediate recruitment and differentiation in order to remove inflammatory inducers and promote tissue homeostasis restoration. The change in the intestinal microbiota also influences the change in obesity and regresses the liver steatosis. Evidence on the positive role of moderate alcohol consumption on heart and metabolic diseases as well on reducing steatosis have been looked up. Moreover nutrition as a therapeutic intervention in alcoholic liver disease has been discussed. In addition to the original data, we searched the literature (2008-2016) for the latest publication on the described subjects. In order to obtain the updated data we used the usual engines (Pub Med and Google Scholar). The intention of the eighth symposia was to advance the international profile of the biological research on alcoholism. We also wish to further our mission of leading the forum to progress the science and practice of translational research in alcoholism.


Alcoholism/complications , Life Style , Liver Diseases, Alcoholic/complications , Microbiota , Non-alcoholic Fatty Liver Disease/complications , Congresses as Topic , Cytochrome P-450 CYP2E1/genetics , Cytochrome P-450 CYP2E1/metabolism , Hepatitis, Alcoholic/complications , Hepatitis, Alcoholic/enzymology , Hepatitis, Alcoholic/genetics , Humans , Liver Diseases, Alcoholic/enzymology , Liver Diseases, Alcoholic/genetics , Non-alcoholic Fatty Liver Disease/enzymology , Non-alcoholic Fatty Liver Disease/genetics , Polymorphism, Genetic
4.
J Pharm Pharm Sci ; 19(1): 8-24, 2016.
Article En | MEDLINE | ID: mdl-27096691

UNLABELLED: The present review includes translational and clinical research that characterize non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Clinical and experimental evidence led to the recognition of the key toxic role played by lipotoxicity in the pathogenesis of NAFLD. The current understanding of lipotoxicity suggests that organ injury is initiated by the generation of oxidative metabolites and the translocation of gut-derived endotoxin. These processes lead to cellular injury and stimulation of the inflammatory responses mediated through a variety of molecules. The injury progresses through impairment of tissue regeneration and extracellular matrix turnover, leading to fibrogenesis and cirrhosis. Several cell types are involved in this process, predominantly stellate cells, macrophages and parenchymal cells. In response to inflammation, cytokines activate many signaling cascades that regulate fibrogenesis. This examination brings together research focusing on the underlying mechanisms of injury. It highlights the various processes and molecules that are likely involved in inflammation, immune modulation, and fibrogenesis in the liver. We searched electronic databases (Medline, Embase) for this review. This integrative work investigates different aspects of liver damage and possible repair. We aim to (1) determine the immuno-pathology of liver damage due to steatosis, (2) suggest diagnostic markers of NASH, (3) examine the role of behaviour in the development of NASH, and (4) develop common tools to study steatosis-induced effects in clinical studies. Special accent is put on co-morbidities with renal and neuropsychological disorders. Moreover, we review the evidence in literature on the role of moderate alcohol consumption in individuals that present NAFLD/NASH. KEY WORDS: behavior, diet, imaging, non-alcoholic fatty liver, nonalcoholic steatohepatitis, laboratory markers.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.


Non-alcoholic Fatty Liver Disease/metabolism , Translational Research, Biomedical , Clinical Protocols , Cytokines/metabolism , Humans , Inflammation/metabolism , Non-alcoholic Fatty Liver Disease/pathology
5.
J Pharm Pharm Sci ; 18(4): 825-43, 2015.
Article En | MEDLINE | ID: mdl-26626258

PURPOSE: This article aimed 1) to review herbal medicine containing pyrrolizidine alkaloids (PA)-induced toxicities of the liver; 2) to encourage the recognition and prevention of common problems encountered when using complementary and alternative medicine and 3) to review the toxic effects of herbal remedies containing PAs. DESIGN AND METHODS: We performed a systematic literature search using the PubMed and Google Scholar engines. The search was not restricted to languages. We also provide an interpretation of the data. CONCLUSIONS: Herbal remedies containing PAs can induce liver damage, including hepato- sinusoidal obstruction syndrome or veno-occlusive disease. Preventing overdose and monitoring long-term use of such remedies may avoid glutathione depletion leading to mitochondrial injury, and therefore avoid liver cell damage. Moreover, immediately stopping the herbal medication prevents further harm to the liver. Chronic consumption of hepatotoxicants can lead to cancer formation and promotion. The role of active metabolites in PA-induced liver toxicity and their mechanism of action require further investigation. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.


Chemical and Drug Induced Liver Injury/etiology , Plants, Medicinal/chemistry , Pyrrolizidine Alkaloids/toxicity , Animals , Chemical and Drug Induced Liver Injury/prevention & control , Complementary Therapies/adverse effects , Complementary Therapies/methods , Drug Overdose , Glutathione/metabolism , Humans , Mitochondria/pathology , Pyrrolizidine Alkaloids/administration & dosage
6.
Biomolecules ; 5(3): 2023-34, 2015 Aug 28.
Article En | MEDLINE | ID: mdl-26343741

The present review spans a broad spectrum of topics dealing with alcoholic liver disease (ALD), including clinical and translational research. It focuses on the role of the immune system and the signaling pathways of cytokines in the pathogenesis of ALD. An additional factor that contributes to the pathogenesis of ALD is lipopolysaccharide (LPS), which plays a central role in the induction of steatosis, inflammation, and fibrosis in the liver. LPS derived from the intestinal microbiota enters the portal circulation, and is recognized by macrophages (Kupffer cells) and hepatocytes. In individuals with ALD, excessive levels of LPS in the liver affect immune, parenchymal, and non-immune cells, which in turn release various inflammatory cytokines and recruit neutrophils and other inflammatory cells. In this review, we elucidate the mechanisms by which alcohol contributes to the activation of Kupffer cells and the inflammatory cascade. The role of the stellate cells in fibrogenesis is also discussed.


Cytokines/metabolism , Liver Diseases, Alcoholic/metabolism , Alcoholism/metabolism , Humans , Lipopolysaccharides/metabolism
7.
Exp Mol Pathol ; 97(3): 492-510, 2014 Dec.
Article En | MEDLINE | ID: mdl-25217800

This paper is based upon the "Charles Lieber Satellite Symposia" organized by Manuela G. Neuman at the Research Society on Alcoholism (RSA) Annual Meetings, 2013 and 2014. The present review includes pre-clinical, translational and clinical research that characterize alcoholic liver disease (ALD) and non-alcoholic steatohepatitis (NASH). In addition, a literature search in the discussed area was performed. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD. The liver biopsy can confirm the etiology of NASH or alcoholic steatohepatitis (ASH) and assess structural alterations of cells, their organelles, as well as inflammatory activity. Three histological stages of ALD are simple steatosis, ASH, and chronic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes such as cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Alcohol mediated hepatocarcinogenesis, immune response to alcohol in ASH, as well as the role of other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human immunodeficiency virus are discussed. Dysregulation of hepatic methylation, as result of ethanol exposure, in hepatocytes transfected with hepatitis C virus (HCV), illustrates an impaired interferon signaling. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota are suggested. The clinical aspects of NASH, as part of metabolic syndrome in the aging population, are offered. The integrative symposia investigate different aspects of alcohol-induced liver damage and possible repair. We aim to (1) determine the immuno-pathology of alcohol-induced liver damage, (2) examine the role of genetics in the development of ASH, (3) propose diagnostic markers of ASH and NASH, (4) examine age differences, (5) develop common research tools to study alcohol-induced effects in clinical and pre-clinical studies, and (6) focus on factors that aggravate severity of organ-damage. The intention of these symposia is to advance the international profile of the biological research on alcoholism. We also wish to further our mission of leading the forum to progress the science and practice of translational research in alcoholism.


Fatty Liver , Non-alcoholic Fatty Liver Disease , Animals , Humans
...