Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Pharm Des ; 25(45): 4763-4770, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31820693

RESUMEN

Stroke is an important cause of death and disability, and it is the second leading cause of death worldwide. In humans, middle cerebral artery occlusion (MCAO) is the most common cause of ischemic stroke. The damage occurs due to the lack of nutrients and oxygen contributed by the blood flow. The present review aims to analyze to what extent the lack of each of the elements of the system leads to damage and which mechanisms are unaffected by this deficiency. We believe that the specific analysis of the effect of lack of each component could lead to the emergence of new therapeutic targets for this important brain pathology.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Isquemia Encefálica , Diana Mecanicista del Complejo 1 de la Rapamicina , Accidente Cerebrovascular , Aminoácidos , Glucosa , Humanos , Infarto de la Arteria Cerebral Media , Oxígeno
2.
Cells ; 6(3)2017 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-28832529

RESUMEN

Autophagy is a complex process that controls the transport of cytoplasmic components into lysosomes for degradation. This highly conserved proteolytic system involves dynamic and complex processes, using similar molecular elements and machinery from yeast to humans. Moreover, autophagic dysfunction may contribute to a broad spectrum of mammalian diseases. Indeed, in adult tissues, where the capacity for regeneration or cell division is low or absent (e.g., in the mammalian brain), the accumulation of proteins/peptides that would otherwise be recycled or destroyed may have pathological implications. Indeed, such changes are hallmarks of pathologies, like Alzheimer's, Prion or Parkinson's disease, known as proteinopathies. However, it is still unclear whether such dysfunction is a cause or an effect in these conditions. One advantage when analysing autophagy in the mammalian brain is that almost all the markers described in different cell lineages and systems appear to be present in the brain, and even in neurons. By contrast, the mixture of cell types present in the brain and the differentiation stage of such neurons, when compared with neurons in culture, make translating basic research to the clinic less straightforward. Thus, the purpose of this review is to describe and discuss the methods available to monitor autophagy in neurons and in the mammalian brain, a process that is not yet fully understood, focusing primarily on mammalian macroautophagy. We will describe some general features of neuronal autophagy that point to our focus on neuropathologies in which macroautophagy may be altered. Indeed, we centre this review around the hypothesis that enhanced autophagy may be able to provide therapeutic benefits in some brain pathologies, like Alzheimer's disease, considering this pathology as one of the most prevalent proteinopathies.

3.
J Neuroinflammation ; 9: 157, 2012 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-22747981

RESUMEN

BACKGROUND: Estradiol has been shown to exert neuroprotective effects in several neurodegenerative conditions, including cerebral ischemia. The presence of this hormone prior to ischemia attenuates the damage associated with such events in a rodent model (middle cerebral artery occlusion (MCAO)), although its therapeutic value when administered post-ischemia has not been assessed. Hence, we evaluated the effects of estradiol treatment after permanent MCAO (pMCAO) was induced in rats, studying the PI3K/AKT/GSK3/ß-catenin survival pathway and the activation of SAPK-JNK in two brain areas differently affected by pMCAO: the cortex and hippocampus. In addition, we analyzed the effect of estradiol on the glial response to injury. METHODS: Male rats were subjected to pMCAO and estradiol (0.04 mg/kg) was administered 6, 24, and 48 h after surgery. The animals were sacrificed 6 h after the last treatment, and brain damage was evaluated by immunohistochemical quantification of 'reactive gliosis' using antibodies against GFAP and Iba1. In addition, Akt, phospho-Akt(Ser473), phospho-Akt(Thr308), GSK3, phospho-GSK3(Ser21/9), ß-catenin, SAPK-JNK, and pSAPK-JNK(Thr183/Tyr185) levels were determined in western blots of the ipsilateral cerebral cortex and hippocampus, and regional differences in neuronal phospho-Akt expression were determined by immunohistochemistry. RESULTS: The increases in the percentage of GFAP- (5.25-fold) and Iba1- (1.8-fold) labeled cells in the cortex and hippocampus indicate that pMCAO induced 'reactive gliosis'. This effect was prevented by post-ischemic estradiol treatment; diminished the number of these cells to those comparable with control animals. pMCAO down-regulated the PI3K/AkT/GSK3/ß-catenin survival pathway to different extents in the cortex and hippocampus, the activity of which was restored by estradiol treatment more efficiently in the cerebral cortex (the most affected region) than in the hippocampus. No changes in the phosphorylation of SAPK-JNK were observed 54 h after inducing pMCAO, whereas pMCAO did significantly decrease the phospho-Akt(Ser473) in neurons, an effect that was reversed by estradiol. CONCLUSION: The present study demonstrates that post-pMCAO estradiol treatment attenuates ischemic injury in both neurons and glia, events in which the PI3K/AKT/GSK3/ß-catenin pathway is at least partly involved. These findings indicate that estradiol is a potentially useful treatment to enhance recovery after human ischemic stroke.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Corteza Cerebral/efectos de los fármacos , Estradiol/administración & dosificación , Hipocampo/efectos de los fármacos , Neuroglía/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Corteza Cerebral/patología , Corteza Cerebral/fisiología , Modelos Animales de Enfermedad , Hipocampo/patología , Hipocampo/fisiología , Masculino , Neuroglía/patología , Neuroglía/fisiología , Distribución Aleatoria , Ratas , Ratas Wistar , Transducción de Señal/fisiología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA