Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 243(3): 894-908, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38853424

RESUMEN

The 'assimilates inhibition hypothesis' posits that accumulation of nonstructural carbohydrates (NSCs) in leaves reduces leaf net photosynthetic rate, thus internally regulating photosynthesis. Experimental work provides equivocal support mostly under controlled conditions without identifying a particular NSC as involved in the regulation. We combined 3-yr in situ leaf gas exchange observations (natural dynamics) in the upper crown of mature Betula pendula simultaneously with measurements of concentrations of sucrose, hexoses (glucose and fructose), and starch, and similar measurements during several one-day shoot girdling (perturbation dynamics). Leaf water potential and water and nitrogen content were measured to account for their possible contribution to photosynthesis regulation. Leaf photosynthetic capacity (A/Ci) was temporally negatively correlated with NSC accumulation under both natural and perturbation states. For developed leaves, leaf hexose concentration explained A/Ci variation better than environmental variables (temperature history and daylength); the opposite was observed for developing leaves. The weaker correlations between NSCs and A/Ci in developing leaves may reflect their strong internal sink strength for carbohydrates. By contrast, the strong decline in photosynthetic capacity with NSCs accumulation in mature leaves, observed most clearly with hexose, and even more tightly with its constituents, provides support for the role of assimilates in regulating photosynthesis under natural conditions.


Asunto(s)
Betula , Hexosas , Fotosíntesis , Hojas de la Planta , Estaciones del Año , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Betula/fisiología , Betula/metabolismo , Hexosas/metabolismo , Secuestro de Carbono , Agua/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Almidón/metabolismo
2.
J Exp Bot ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38779859

RESUMEN

Stem CO2 efflux is an important component of the carbon balance in forests. The efflux is considered to principally reflect the net result of two dominating and opposing processes: stem respiration and stem photosynthesis. In addition, transport of CO2 in xylem sap is thought to play an appreciable role in affecting the net flux. This work presents an approach to partition stem CO2 efflux among these processes using sap-flux data and CO2-exchange measurements from dark and transparent chambers placed on mature Scots pine (Pinus sylvestris) trees. Seasonal changes and monthly parameters describing the studied processes were determined. Respiration contributed most to stem net CO2 flux, reaching up to 79% (considering the sum of the absolute values of stem respiration, stem photosynthesis and flux from CO2 transported in xylem sap to be 100%) in June, when stem growth was greatest. Photosynthesis contribution accounted for up to 13 % of the stem net CO2 flux, increasing over the monitoring period. CO2 transported axially with sap flow, decreased towards the end of the growing season. At a reference temperature, respiration decreased starting around midsummer, while its temperature sensitivity increased during the summer. A decline was observed for photosynthetic quantum yield around midsummer together with decreasing light-saturation point. The proposed approach facilitates modeling net stem CO2 flux at a range of time scales.

3.
Glob Chang Biol ; 29(7): 1890-1904, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36655411

RESUMEN

Increased meteorological drought intensity with rising atmospheric demand for water (hereafter vapor pressure deficit [VPD]) increases the risk of tree mortality and ecosystem dysfunction worldwide. Ecosystem-scale water-use strategy is increasingly recognized as a key factor in regulating drought-related ecosystem responses. However, the link between water-use strategy and ecosystem vulnerability to meteorological droughts is poorly established. Using the global flux observations, historic hydroclimatic data, remote-sensing products, and plant functional-trait archive, we identified potentially vulnerable ecosystems, examining how ecosystem water-use strategy, quantified by the percentage bias (δ) of the empirical canopy conductance sensitivity to VPD relative to the theoretical value, mediated ecosystem responses to droughts. We found that prevailing soil water availability substantially impacted δ in dryland regions where ecosystems with insufficient soil moisture usually showed conservative water-use strategy, while ecosystems in humid regions exhibited more pronounced climatic adaptability. Hyposensitive and hypersensitive ecosystems, classified based on δ falling below or above the theoretical sensitivity, respectively, achieved similar net ecosystem productivity during droughts, employing different structural and functional strategies. However, hyposensitive ecosystems, risking their hydraulic system with a permissive water-use strategy, were unable to recover from droughts as quickly as hypersensitive ones. Our findings highlight that processed-based models predicting current functions and future performance of vegetation should account for the greater vulnerability of hyposensitive ecosystems to intensifying atmospheric and soil droughts.


Asunto(s)
Sequías , Ecosistema , Suelo/química , Agua/fisiología , Árboles
4.
Nat Ecol Evol ; 6(3): 315-323, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35027723

RESUMEN

Experiments show that elevated atmospheric CO2 (eCO2) often enhances plant photosynthesis and productivity, yet this effect varies substantially and may be climate sensitive. Understanding if, where and how water supply regulates CO2 enhancement is critical for projecting terrestrial responses to increasing atmospheric CO2 and climate change. Here, using data from 14 long-term ecosystem-scale CO2 experiments, we show that the eCO2 enhancement of annual aboveground net primary productivity is sensitive to annual precipitation and that this sensitivity differs between woody and grassland ecosystems. During wetter years, CO2 enhancement increases in woody ecosystems but declines in grass-dominated systems. Consistent with this difference, woody ecosystems can increase leaf area index in wetter years more effectively under eCO2 than can grassland ecosystems. Overall, and across different precipitation regimes, woody systems had markedly stronger CO2 enhancement (24%) than grasslands (13%). We developed an empirical relationship to quantify aboveground net primary productivity enhancement on the basis of changes in leaf area index, providing a new approach for evaluating eCO2 impacts on the productivity of terrestrial ecosystems.


Asunto(s)
Ecosistema , Pradera , Dióxido de Carbono , Fotosíntesis , Abastecimiento de Agua
5.
Tree Physiol ; 42(3): 513-522, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-34580709

RESUMEN

Boreal trees are capable of taking up organic nitrogen (N) as effectively as inorganic N. Depending on the abundance of soil N forms, plants may adjust physiological and morphological traits to optimize N uptake. However, the link between these traits and N uptake in response to soil N sources is poorly understood. We examined Pinus sylvestris L. seedlings' biomass growth and allocation, transpiration and N uptake in response to additions of organic N (the amino acid arginine) or inorganic N (ammonium nitrate). We also monitored in situ soil N fluxes in the pots following an addition of N, using a microdialysis system. Supplying organic N resulted in a stable soil N flux, whereas the inorganic N resulted in a sharp increase of nitrate flux followed by a rapid decline, demonstrating a fluctuating N supply and a risk for loss of nitrate from the growth medium. Seedlings supplied with organic N achieved a greater biomass with a higher N content, thus reaching a higher N recovery compared with those supplied inorganic N. In spite of a higher N concentration in organic N seedlings, root-to-shoot ratio and transpiration per unit leaf area were similar to those of inorganic N seedlings. We conclude that enhanced seedlings' nutrition and growth under the organic N source may be attributed to a stable supply of N, owing to a strong retention rate in the soil medium.


Asunto(s)
Pinus sylvestris , Pinus , Nitrógeno/metabolismo , Pinus/fisiología , Pinus sylvestris/fisiología , Raíces de Plantas/fisiología , Plantones/fisiología , Suelo/química , Árboles/metabolismo
6.
Glob Chang Biol ; 28(4): 1458-1476, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34783402

RESUMEN

Elevated atmospheric CO2 (eCO2 ) typically increases aboveground growth in both growth chamber and free-air carbon enrichment (FACE) studies. Here we report on the impacts of eCO2 and nitrogen amendment on coarse root biomass and net primary productivity (NPP) at the Duke FACE study, where half of the eight plots in a 30-year-old loblolly pine (Pinus taeda, L.) plantation, including competing naturally regenerated broadleaved species, were subjected to eCO2 (ambient, aCO2 plus 200 ppm) for 15-17 years, combined with annual nitrogen amendments (11.2 g N m-2 ) for 6 years. Allometric equations were developed following harvest to estimate coarse root (>2 mm diameter) biomass. Pine root biomass under eCO2 increased 32%, 1.80 kg m-2 above the 5.66 kg m-2 observed in aCO2 , largely accumulating in the top 30 cm of soil. In contrast, eCO2 increased broadleaved root biomass more than twofold (aCO2 : 0.81, eCO2 : 2.07 kg m-2 ), primarily accumulating in the 30-60 cm soil depth. Combined, pine and broadleaved root biomass increased 3.08 kg m-2 over aCO2 of 6.46 kg m-2 , a 48% increase. Elevated CO2 did not increase pine root:shoot ratio (average 0.24) but increased the ratio from 0.57 to 1.12 in broadleaved species. Averaged over the study (1997-2010), eCO2 increased pine, broadleaved and total coarse root NPP by 49%, 373% and 86% respectively. Nitrogen amendment had smaller effects on any component, singly or interacting with eCO2 . A sustained increase in root NPP under eCO2 over the study period indicates that soil nutrients were sufficient to maintain root growth response to eCO2 . These responses must be considered in computing coarse root carbon sequestration of the extensive southern pine and similar forests, and in modelling the responses of coarse root biomass of pine-broadleaved forests to CO2 concentration over a range of soil N availability.


Asunto(s)
Nitrógeno , Pinus taeda , Biomasa , Dióxido de Carbono , Suelo
7.
Glob Chang Biol ; 27(13): 3066-3078, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33949757

RESUMEN

Trees in northern latitude ecosystems are projected to experience increasing drought stress as a result of rising air temperatures and changes in precipitation patterns in northern latitude ecosystems. However, most drought-related studies on high-latitude boreal forests (>50°N) have been conducted in North America, with few studies quantifying the response in European and Eurasian boreal forests. Here, we tested how daily whole-tree transpiration (Q, Liters day-1 ) and Q normalized for mean daytime vapor pressure deficit (QDZ , Liters day-1 kPa-1 ) were affected by the historic 2018 drought in Europe. More specifically, we examined how tree species, size, and topographic position affected drought response in high-latitude mature boreal forest trees. We monitored 30 Pinus sylvestris (pine) and 30 Picea abies (spruce) trees distributed across a topographic gradient in northern Sweden. In general, pine showed a greater QDZ control compared to spruce during periods of severe drought (standardized precipitation-evapotranspiration index: SPEI < -1.5), suggesting that the latter are more sensitive to drought. Overall, QDZ reductions (using non-drought QDZ as reference) were less pronounced in larger trees during severe drought, but there was a species-specific pattern: QDZ reductions were greater in pine trees at high elevations and greater in spruce trees at lower elevations. Despite lower QDZ during severe drought, drought spells were interspersed with small precipitation events and overcast conditions, and QDZ returned to pre-drought conditions relatively quickly. This study highlights unique species-specific responses to drought, which are additionally driven by a codependent interaction among tree size, relative topographic position, and unique regional climate conditions.


Asunto(s)
Picea , Taiga , Sequías , Ecosistema , Europa (Continente) , Bosques , América del Norte , Suecia , Árboles
8.
Tree Physiol ; 41(1): 63-75, 2021 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-32864696

RESUMEN

Several studies have suggested that CO2 transport in the transpiration stream can considerably bias estimates of root and stem respiration in ring-porous and diffuse-porous tree species. Whether this also happens in species with tracheid xylem anatomy and lower sap flow rates, such as conifers, is currently unclear. We infused 13C-labelled solution into the xylem near the base of two 90-year-old Pinus sylvestris L. trees. A custom-built gas exchange system and an online isotopic analyser were used to sample the CO2 efflux and its isotopic composition continuously from four positions along the bole and one upper canopy shoot in each tree. Phloem and needle tissue 13C enrichment was also evaluated at these positions. Most of the 13C label was lost by diffusion within a few metres of the infusion point indicating rapid CO2 loss during vertical xylem transport. No 13C enrichment was detected in the upper bole needle tissues. Furthermore, mass balance calculations showed that c. 97% of the locally respired CO2 diffused radially to the atmosphere. Our results support the notion that xylem CO2 transport is of limited magnitude in conifers. This implies that the concerns that stem transport of CO2 derived from root respiration biases chamber-based estimates of forest carbon cycling may be unwarranted for mature conifer stands.


Asunto(s)
Pinus sylvestris , Pinus , Dióxido de Carbono , Floema , Tallos de la Planta , Árboles , Xilema
9.
Plant Cell Environ ; 43(9): 2124-2142, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32596814

RESUMEN

Gross primary production (GPP) is a key component of the forest carbon cycle. However, our knowledge of GPP at the stand scale remains uncertain, because estimates derived from eddy covariance (EC) rely on semi-empirical modelling and the assumptions of the EC technique are sometimes not fully met. We propose using the sap flux/isotope method as an alternative way to estimate canopy GPP, termed GPPiso/SF , at the stand scale and at daily resolution. It is based on canopy conductance inferred from sap flux and intrinsic water-use efficiency estimated from the stable carbon isotope composition of phloem contents. The GPPiso/SF estimate was further corrected for seasonal variations in photosynthetic capacity and mesophyll conductance. We compared our estimate of GPPiso/SF to the GPP derived from PRELES, a model parameterized with EC data. The comparisons were performed in a highly instrumented, boreal Scots pine forest in northern Sweden, including a nitrogen fertilized and a reference plot. The resulting annual and daily GPPiso/SF estimates agreed well with PRELES, in the fertilized plot and the reference plot. We discuss the GPPiso/SF method as an alternative which can be widely applied without terrain restrictions, where the assumptions of EC are not met.


Asunto(s)
Células del Mesófilo/fisiología , Modelos Biológicos , Floema/química , Taiga , Ciclo del Carbono , Isótopos de Carbono/análisis , Ecosistema , Nitrógeno , Floema/fisiología , Fotosíntesis , Pinus sylvestris , Transpiración de Plantas/fisiología , Suecia , Árboles , Agua/metabolismo
10.
Plant Cell Environ ; 42(11): 3121-3139, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31124152

RESUMEN

The ability to transport water through tall stems hydraulically limits stomatal conductance (gs ), thereby constraining photosynthesis and growth. However, some plants are able to minimize this height-related decrease in gs , regardless of path length. We hypothesized that kudzu (Pueraria lobata) prevents strong declines in gs with height through appreciable structural and hydraulic compensative alterations. We observed only a 12% decline in maximum gs along 15-m-long stems and were able to model this empirical trend. Increasing resistance with transport distance was not compensated by increasing sapwood-to-leaf-area ratio. Compensating for increasing leaf area by adjusting the driving force would require water potential reaching -1.9 MPa, far below the wilting point (-1.2 MPa). The negative effect of stem length was compensated for by decreasing petiole hydraulic resistance and by increasing stem sapwood area and water storage, with capacitive discharge representing 8-12% of the water flux. In addition, large lateral (petiole, leaves) relative to axial hydraulic resistance helped improve water flow distribution to top leaves. These results indicate that gs of distal leaves can be similar to that of basal leaves, provided that resistance is highest in petioles, and sufficient amounts of water storage can be used to subsidize the transpiration stream.


Asunto(s)
Hojas de la Planta/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo , Estomas de Plantas/crecimiento & desarrollo , Transpiración de Plantas/fisiología , Pueraria/crecimiento & desarrollo , Agua/fisiología , Transporte Biológico , Dióxido de Carbono/metabolismo , Gravitación , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Tallos de la Planta/anatomía & histología , Estomas de Plantas/anatomía & histología , Estomas de Plantas/fisiología , Pueraria/anatomía & histología , Pueraria/fisiología , Agua/metabolismo
11.
Nat Commun ; 10(1): 454, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30765702

RESUMEN

Increasing atmospheric CO2 stimulates photosynthesis which can increase net primary production (NPP), but at longer timescales may not necessarily increase plant biomass. Here we analyse the four decade-long CO2-enrichment experiments in woody ecosystems that measured total NPP and biomass. CO2 enrichment increased biomass increment by 1.05 ± 0.26 kg C m-2 over a full decade, a 29.1 ± 11.7% stimulation of biomass gain in these early-secondary-succession temperate ecosystems. This response is predictable by combining the CO2 response of NPP (0.16 ± 0.03 kg C m-2 y-1) and the CO2-independent, linear slope between biomass increment and cumulative NPP (0.55 ± 0.17). An ensemble of terrestrial ecosystem models fail to predict both terms correctly. Allocation to wood was a driver of across-site, and across-model, response variability and together with CO2-independence of biomass retention highlights the value of understanding drivers of wood allocation under ambient conditions to correctly interpret and predict CO2 responses.


Asunto(s)
Dióxido de Carbono/análisis , Árboles/metabolismo , Biomasa , Dióxido de Carbono/metabolismo , Clima , Ecosistema , Fotosíntesis , Árboles/crecimiento & desarrollo , Madera/crecimiento & desarrollo
12.
Plant Cell Environ ; 42(5): 1690-1704, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30684950

RESUMEN

The genus Pinus has wide geographical range and includes species that are the most economically valued among forest trees worldwide. Pine needle length varies greatly among species, but the effects of needle length on anatomy, function, and coordination and trade-offs among traits are poorly understood. We examined variation in leaf morphological, anatomical, mechanical, chemical, and physiological characteristics among five southern pine species: Pinus echinata, Pinus elliottii, Pinus palustris, Pinus taeda, and Pinus virginiana. We found that increasing needle length contributed to a trade-off between the relative fractions of support versus photosynthetic tissue (mesophyll) across species. From the shortest (7 cm) to the longest (36 cm) needles, mechanical tissue fraction increased by 50%, whereas needle dry density decreased by 21%, revealing multiple adjustments to a greater need for mechanical support in longer needles. We also found a fourfold increase in leaf hydraulic conductance over the range of needle length across species, associated with weaker upward trends in stomatal conductance and photosynthetic capacity. Our results suggest that the leaf size strongly influences their anatomical traits, which, in turn, are reflected in leaf mechanical support and physiological capacity.


Asunto(s)
Transporte Biológico/fisiología , Fotosíntesis/fisiología , Pinus , Hojas de la Planta/anatomía & histología , Transpiración de Plantas/fisiología , Pinus/clasificación , Pinus/fisiología , Hojas de la Planta/fisiología , Estomas de Plantas/anatomía & histología , Estomas de Plantas/fisiología , Agua/metabolismo , Xilema/anatomía & histología , Xilema/fisiología
13.
Tree Physiol ; 38(9): 1261-1266, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30285254

Asunto(s)
Biomasa , Frutas , Olea , Árboles , Madera
14.
Glob Chang Biol ; 24(10): 4841-4856, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29949220

RESUMEN

Changes in evapotranspiration (ET) from terrestrial ecosystems affect their water yield (WY), with considerable ecological and economic consequences. Increases in surface runoff observed over the past century have been attributed to increasing atmospheric CO2 concentrations resulting in reduced ET by terrestrial ecosystems. Here, we evaluate the water balance of a Pinus taeda (L.) forest with a broadleaf component that was exposed to atmospheric [CO2 ] enrichment (ECO2 ; +200 ppm) for over 17 years and fertilization for 6 years, monitored with hundreds of environmental and sap flux sensors on a half-hourly basis. These measurements were synthesized using a one-dimensional Richard's equation model to evaluate treatment differences in transpiration (T), evaporation (E), ET, and WY. We found that ECO2 did not create significant differences in stand T, ET, or WY under either native or enhanced soil fertility, despite a 20% and 13% increase in leaf area index, respectively. While T, ET, and WY responded to fertilization, this response was weak (<3% of mean annual precipitation). Likewise, while E responded to ECO2 in the first 7 years of the study, this effect was of negligible magnitude (<1% mean annual precipitation). Given the global range of conifers similar to P. taeda, our results imply that recent observations of increased global streamflow cannot be attributed to decreases in ET across all ecosystems, demonstrating a great need for model-data synthesis activities to incorporate our current understanding of terrestrial vegetation in global water cycle models.


Asunto(s)
Dióxido de Carbono/metabolismo , Bosques , Pinus taeda/metabolismo , Transpiración de Plantas , Suelo/química , Agua/metabolismo , Ecosistema , Hojas de la Planta/fisiología
15.
Tree Physiol ; 38(11): 1694-1705, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29771393

RESUMEN

A pot experiment was conducted to investigate the effects of nitrogen (N) addition (0, 20, 40 g N m-2 year-1, N0, N20, N40, respectively) on the growth, and biomass accumulation and allocation of coniferous and deciduous (Picea asperata Mast. and Betula albosinensis Burk.) seedlings under a range of soil moisture limitation (40%, 50%, 60%, 80% and 100% of field capacity, FC). At 100% FC, growth of shade-tolerant P. asperata increased with N supply, while that of shade-intolerant B. albosinensis reached a maximum at N20, declining somewhat thereafter. At 60% FC and lower moisture content, water availability limited the growth of P. asperata seedlings, while N availability became progressively limiting to growth with moisture increasing above 60% FC. The transition from principally water-limited response to N-limited response in B. albosinensis occurred at lower moisture content. For P. asperata, these patterns reflected the responses of roots, consistent with changes in root/shoot biomass. For B. albosinensis the response reflected changes in shoot dimensions and root biomass fraction, the latter decreasing with size and foliar [N]. We are not aware of another study demonstrating such differences in the shape of the growth responses of seedlings of differing potential growth rate, across a range in belowground resource supply. The responses of leaf photosynthesis (as well as photosynthetic water and N-use efficiencies) were consistent with the observed growth response of P. asperata to water and N availability, but not of B. albosinensis, suggesting that leaf area dynamics (not measured) dominated the response of this species. Betula albosinensis, a fast-growing species, has a relative narrow range of soil water and N availability for maximum growth, achieved by preferential allocation to the shoot as resources meet the requirements at moderate N and water supply. In contrast, P. asperata increases shoot biomass progressively with increasing resources up to moderate water supply, preferentially growing more roots when resources are not limiting, suggesting that its capacity to produce shoot biomass may reach a biological limit at moderate levels of resource supply.


Asunto(s)
Betula/metabolismo , Nitrógeno/metabolismo , Picea/metabolismo , Agua/metabolismo , Betula/crecimiento & desarrollo , Biomasa , Relación Dosis-Respuesta a Droga , Nitrógeno/administración & dosificación , Picea/crecimiento & desarrollo , Suelo/química
16.
Tree Physiol ; 38(4): 558-569, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29077969

RESUMEN

Trees are able to reduce their carbon (C) losses by refixing some of the CO2 diffusing out of their stems through corticular photosynthesis. Previous studies have shown that under ideal conditions the outflowing CO2 can be completely assimilated in metabolically active, young stem and branch tissues. Fewer studies have, however, been carried out on the older stem sections of large trees and, accordingly, the importance of refixation is still unclear under natural environmental conditions. We investigated the spatial and temporal variation in refixation in ~90-year-old boreal Scots pine (Pinus sylvestris L.) trees by utilizing month-long continuous measurements of stem CO2 efflux (Ec) made at four heights along the bole. Refixation rates were found to vary considerably along the bole, leading to a 28% reduction in long-term Ec in the upper stem compared with a negligible reduction at breast height. This vertical pattern correlated with variation in light availability, bark chlorophyll content and bark type. Analysis of the vertical and diurnal patterns in Ec further suggested that the influence of sap flow on the observed daytime reduction in Ec was small. The areal rates of corticular photosynthesis were much lower than previous estimates of photosynthetic rates per unit leaf area from the same trees, implying that the impact of refixation on tree-scale C uptake was small. However, upscaling of refixation indicated that 23-27% of the potential Ec was refixed by the bole and the branches, thereby significantly reducing the woody tissue C losses. Thus, our results suggest that refixation needs to be considered when evaluating the aboveground C cycling of mature P. sylvestris stands and that breast-height estimates should not be extrapolated to the whole tree.


Asunto(s)
Dióxido de Carbono/metabolismo , Fotosíntesis/fisiología , Pinus sylvestris/fisiología , Pinus sylvestris/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/fisiología
17.
Tree Physiol ; 37(7): 879-888, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28898994

RESUMEN

Accurate values of photosynthetic capacity are needed in Earth System Models to predict gross primary productivity. Seasonal changes in photosynthetic capacity in these models are primarily driven by temperature, but recent work has suggested that photoperiod may be a better predictor of seasonal photosynthetic capacity. Using field-grown kudzu (Pueraria lobata (Willd.) Ohwi), a nitrogen-fixing vine species, we took weekly measurements of photosynthetic capacity, leaf nitrogen, and pigment and photosynthetic protein concentrations and correlated these with temperature, irradiance and photoperiod over the growing season. Photosynthetic capacity was more strongly correlated with photoperiod than with temperature or daily irradiance, while the growing season pattern in photosynthetic capacity was uncoupled from changes in leaf nitrogen, chlorophyll and Rubisco. Daily estimates of the maximum carboxylation rate of Rubisco (Vcmax) based on either photoperiod or temperature were correlated in a non-linear manner, but Vcmax estimates from both approaches that also accounted for diurnal temperature fluctuations were similar, indicating that differences between these models depend on the relevant time step. We advocate for considering photoperiod, and not just temperature, when estimating photosynthetic capacity across the year, particularly as climate change alters temperatures but not photoperiod. We also caution that the use of leaf biochemical traits as proxies for estimating photosynthetic capacity may be unreliable when the underlying relationships between proxy leaf traits and photosynthetic capacity are established outside of a seasonal framework.


Asunto(s)
Clima , Fotosíntesis , Hojas de la Planta/química , Pueraria/fisiología , Estaciones del Año , Clorofila/química , Modelos Biológicos , Nitrógeno/química , Fotoperiodo , Hojas de la Planta/fisiología , Ribulosa-Bifosfato Carboxilasa/química , Temperatura
18.
Ecol Appl ; 27(6): 1838-1851, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28464423

RESUMEN

We report results from long-term simulated external nitrogen (N) input experiments in three northern Pinus sylvestris forests, two of moderately high and one of moderately low productivity, assessing effects on annual net primary production (NPP) of woody mass and its interannual variation in response to variability in weather conditions. A sigmoidal response of wood NPP to external N inputs was observed in the both higher and lower productivity stands, reaching a maximum of ~65% enhancement regardless of the native site productivity, saturating at an external N input of 4-5 g N·m-2 ·yr-1 . The rate of increase in wood NPP and the N response efficiency (REN , increase in wood NPP per external N input) were maximized at an external N input of ~3 g N·m-2 ·yr-1 , regardless of site productivity. The maximum REN was greater in the higher productivity than the lower productivity stand (~20 vs. ~14 g C/g N). The N-induced enhancement of wood NPP and its REN were, however, markedly contingent on climatic variables. In both of the higher and lower productivity stands, wood NPP increased with growing season precipitation (P), but only up to ~400 mm. The sensitivity of the response to P increased with increasing external N inputs. Increasing growing season temperature (T) somewhat increased the N-induced drought effect, whereas decreasing T reduced the drought effect. These responses of wood NPP infused a large temporal variation to REN , making the use of a fixed value unadvisable. Based on these results, we suggest that regional climate conditions and future climate scenarios should be considered when modeling carbon sequestration in response to N deposition in boreal P. sylvestris, and possibly other forests.


Asunto(s)
Secuestro de Carbono , Clima , Bosques , Nitrógeno/metabolismo , Pinus sylvestris/metabolismo , Noruega , Estaciones del Año , Suecia , Árboles/metabolismo , Madera/química , Madera/metabolismo
19.
Glob Chang Biol ; 23(9): 3501-3512, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28380283

RESUMEN

We evaluated the effect on soil CO2 efflux (FCO2 ) of sudden changes in photosynthetic rates by altering CO2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO2 (eCO2 ) ranging 1.0-1.8 times ambient did not affect FCO2 . FCO2 did not decrease until 4 months after termination of the long-term eCO2 treatment, longer than the 10 days observed for decrease of FCO2 after experimental blocking of C flow to belowground, but shorter than the ~13 months it took for increase of FCO2 following the initiation of eCO2 . The reduction of FCO2 upon termination of enrichment (~35%) cannot be explained by the reduction of leaf area (~15%) and associated carbohydrate production and allocation, suggesting a disproportionate contraction of the belowground ecosystem components; this was consistent with the reductions in base respiration and FCO2 -temperature sensitivity. These asymmetric responses pose a tractable challenge to process-based models attempting to isolate the effect of individual processes on FCO2 .


Asunto(s)
Dióxido de Carbono , Ecosistema , Suelo/química , Fotosíntesis , Hojas de la Planta
20.
Ecol Appl ; 27(1): 118-133, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28052502

RESUMEN

Canopy transpiration (EC ) is a large fraction of evapotranspiration, integrating physical and biological processes within the energy, water, and carbon cycles of forests. Quantifying EC is of both scientific and practical importance, providing information relevant to questions ranging from energy partitioning to ecosystem services, such as primary productivity and water yield. We estimated EC of four pine stands differing in age and growing on sandy soils. The stands consisted of two wide-ranging conifer species: Pinus taeda and Pinus sylvestris, in temperate and boreal zones, respectively. Combining results from these and published studies on all soil types, we derived an approach to estimate daily EC of pine forests, representing a wide range of conditions from 35° S to 64° N latitude. During the growing season and under moist soils, maximum daily EC (ECm ) at day-length normalized vapor pressure deficit of 1 kPa (ECm-ref ) increased by 0.55 ± 0.02 (mean ± SE) mm/d for each unit increase of leaf area index (L) up to L = ~5, showing no sign of saturation within this range of quickly rising mutual shading. The initial rise of ECm with atmospheric demand was linearly related to ECm-ref . Both relations were unaffected by soil type. Consistent with theoretical prediction, daily EC was sensitive to decreasing soil moisture at an earlier point of relative extractable water in loamy than sandy soils. Our finding facilitates the estimation of daily EC of wide-ranging pine forests using remotely sensed L and meteorological data. We advocate an assembly of worldwide sap flux database for further evaluation of this approach.


Asunto(s)
Bosques , Pinus sylvestris/fisiología , Pinus taeda/fisiología , Transpiración de Plantas , Factores de Edad , North Carolina , Suelo , Suecia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...