Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Oncogene ; 43(16): 1223-1230, 2024 Apr.
Article En | MEDLINE | ID: mdl-38413794

CIC::DUX4 sarcoma (CDS) is a rare but highly aggressive undifferentiated small round cell sarcoma driven by a fusion between the tumor suppressor Capicua (CIC) and DUX4. Currently, there are no effective treatments and efforts to identify and translate better therapies are limited by the scarcity of patient tumor samples and cell lines. To address this limitation, we generated three genetically engineered mouse models of CDS (Ch7CDS, Ai9CDS, and TOPCDS). Remarkably, chimeric mice from all three conditional models developed spontaneous soft tissue tumors and disseminated disease in the absence of Cre-recombinase. The penetrance of spontaneous (Cre-independent) tumor formation was complete irrespective of bi-allelic Cic function and the distance between adjacent loxP sites. Characterization of soft tissue and presumed metastatic tumors showed that they consistently expressed the CIC::DUX4 fusion protein and many downstream markers of the disease credentialing the models as CDS. In addition, tumor-derived cell lines were generated and ChIP-seq was preformed to map fusion-gene specific binding using an N-terminal HA epitope tag. These datasets, along with paired H3K27ac ChIP-sequencing maps, validate CIC::DUX4 as a neomorphic transcriptional activator. Moreover, they are consistent with a model where ETS family transcription factors are cooperative and redundant drivers of the core regulatory circuitry in CDS.


Sarcoma, Small Cell , Sarcoma , Soft Tissue Neoplasms , Animals , Mice , Alleles , Biomarkers, Tumor , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Proteins c-ets , Sarcoma/genetics , Sarcoma/metabolism , Sarcoma, Small Cell/chemistry , Sarcoma, Small Cell/genetics , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/pathology , Humans
2.
Res Sq ; 2023 Oct 29.
Article En | MEDLINE | ID: mdl-37961185

CIC-DUX4 sarcoma (CDS) is a rare but highly aggressive undifferentiated small round cell sarcoma driven by a fusion between the tumor suppressor Capicua (CIC) and DUX4. Currently, there are no effective treatments and efforts to identify and translate better therapies are limited by the scarcity of patient tumor samples and cell lines. To address this limitation, we generated three genetically engineered mouse models of CDS (Ch7CDS, Ai9CDS, and TOPCDS). Remarkably, chimeric mice from all three conditional models developed spontaneous tumors and widespread metastasis in the absence of Cre-recombinase. The penetrance of spontaneous (Cre-independent) tumor formation was complete irrespective of bi-allelic CIC function and the distance between loxP sites. Characterization of primary and metastatic mouse tumors showed that they consistently expressed the CIC-DUX4 fusion protein as well as other downstream markers of the disease credentialing these models as CDS. In addition, tumor-derived cell lines were generated and ChIP-seq was preformed to map fusion-gene specific binding using an N-terminal HA epitope tag. These datasets, along with paired H3K27ac ChIP-seq maps, validate CIC-DUX4 as a neomorphic transcriptional activator. Moreover, they are consistent with a model where ETS family transcription factors are cooperative and redundant drivers of the core regulatory circuitry in CDS.

3.
bioRxiv ; 2023 Sep 28.
Article En | MEDLINE | ID: mdl-37808628

CIC-DUX4 sarcoma (CDS) is a rare but highly aggressive undifferentiated small round cell sarcoma driven by a fusion between the tumor suppressor Capicua (CIC) and DUX4. Currently, there are no effective treatments and efforts to identify and translate better therapies are limited by the scarcity of tissues and patients. To address this limitation, we generated three genetically engineered mouse models of CDS (Ch7CDS, Ai9CDS, and TOPCDS). Remarkably, chimeric mice from all three conditional models developed spontaneous tumors and widespread metastasis in the absence of Cre-recombinase. The penetrance of spontaneous (Cre-independent) tumor formation was complete irrespective of bi-allelic CIC function and loxP site proximity. Characterization of primary and metastatic mouse tumors showed that they consistently expressed the CIC-DUX4 fusion protein as well as other downstream markers of the disease credentialing these models as CDS. In addition, tumor-derived cell lines were generated and ChIP-seq was preformed to map fusion-gene specific binding using an N-terminal HA epitope tag. These datasets, along with paired H3K27ac ChIP-seq maps, validate CIC-DUX4 as a neomorphic transcriptional activator. Moreover, they are consistent with a model where ETS family transcription factors are cooperative and redundant drivers of the core regulatory circuitry in CDS.

4.
Mol Oncol ; 16(20): 3587-3605, 2022 10.
Article En | MEDLINE | ID: mdl-36037042

Rhabdomyosarcoma (RMS), a cancer characterized by features of skeletal muscle, is the most common soft-tissue sarcoma of childhood. With 5-year survival rates among high-risk groups at < 30%, new therapeutics are desperately needed. Previously, using a myoblast-based model of fusion-negative RMS (FN-RMS), we found that expression of the Hippo pathway effector transcriptional coactivator YAP1 (YAP1) permitted senescence bypass and subsequent transformation to malignant cells, mimicking FN-RMS. We also found that YAP1 engages in a positive feedback loop with Notch signaling to promote FN-RMS tumorigenesis. However, we could not identify an immediate downstream impact of this Hippo-Notch relationship. Here, we identify a HES1-YAP1-CDKN1C functional interaction, and show that knockdown of the Notch effector HES1 (Hes family BHLH transcription factor 1) impairs growth of multiple FN-RMS cell lines, with knockdown resulting in decreased YAP1 and increased CDKN1C expression. In silico mining of published proteomic and transcriptomic profiles of human RMS patient-derived xenografts revealed the same pattern of HES1-YAP1-CDKN1C expression. Treatment of FN-RMS cells in vitro with the recently described HES1 small-molecule inhibitor, JI130, limited FN-RMS cell growth. Inhibition of HES1 in vivo via conditional expression of a HES1-directed shRNA or JI130 dosing impaired FN-RMS tumor xenograft growth. Lastly, targeted transcriptomic profiling of FN-RMS xenografts in the context of HES1 suppression identified associations between HES1 and RAS-MAPK signaling. In summary, these in vitro and in vivo preclinical studies support the further investigation of HES1 as a therapeutic target in FN-RMS.


Proteomics , Rhabdomyosarcoma , Humans , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Gene Expression Regulation, Neoplastic , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , RNA, Small Interfering , Transcription Factor HES-1/genetics , Transcription Factor HES-1/metabolism , Animals
5.
Sci Rep ; 11(1): 16505, 2021 08 13.
Article En | MEDLINE | ID: mdl-34389744

Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. The two predominant histologic variants of RMS, embryonal and alveolar rhabdomyosarcoma (eRMS and aRMS, respectively), carry very different prognoses. While eRMS is associated with an intermediate prognosis, the 5-year survival rate of aRMS is less than 30%. The RMS subtypes are also different at the molecular level-eRMS frequently has multiple genetic alterations, including mutations in RAS and TP53, whereas aRMS often has chromosomal translocations resulting in PAX3-FOXO1 or PAX7-FOXO1 fusions, but otherwise has a "quiet" genome. Interestingly, mutations in RAS are rarely found in aRMS. In this study, we explored the role of oncogenic RAS in aRMS. We found that while ectopic oncogenic HRAS expression was tolerated in the human RAS-driven eRMS cell line RD, it was detrimental to cell growth and proliferation in the human aRMS cell line Rh28. Growth inhibition was mediated by oncogene-induced senescence and associated with increased RB pathway activity and expression of the cyclin-dependent kinase inhibitors p16 and p21. Unexpectedly, the human eRMS cell line RMS-YM, a RAS wild-type eRMS cell line, also exhibited growth inhibition in response to oncogenic HRAS in a manner similar to aRMS Rh28 cells. This work suggests that oncogenic RAS is expressed in a context-dependent manner in RMS and may provide insight into the differential origins and therapeutic opportunities for RMS subtypes.


Proto-Oncogene Proteins p21(ras)/metabolism , Rhabdomyosarcoma, Alveolar/metabolism , Rhabdomyosarcoma, Embryonal/metabolism , Cell Line, Tumor , Cell Proliferation , Cellular Senescence , Gene Expression Regulation, Neoplastic , Humans , Immunoblotting
6.
Mol Oncol ; 15(8): 2156-2171, 2021 08.
Article En | MEDLINE | ID: mdl-33523558

Rhabdomyosarcoma (RMS) is an aggressive pediatric soft tissue sarcoma. There are two main subtypes of RMS, alveolar rhabdomyosarcoma (ARMS) and embryonal rhabdomyosarcoma. ARMS typically encompasses fusion-positive rhabdomyosarcoma, which expresses either PAX3-FOXO1 or PAX7-FOXO1 fusion proteins. There are no targeted therapies for ARMS; however, recent studies have begun to illustrate the cooperation between epigenetic proteins and the PAX3-FOXO1 fusion, indicating that epigenetic proteins may serve as targets in ARMS. Here, we investigate the contribution of BMI1, given the established role of this epigenetic regulator in sustaining aggression in cancer. We determined that BMI1 is expressed across ARMS tumors, patient-derived xenografts, and cell lines. We depleted BMI1 using RNAi and inhibitors (PTC-209 and PTC-028) and found that this leads to a decrease in cell growth/increase in apoptosis in vitro, and delays tumor growth in vivo. Our data suggest that BMI1 inhibition activates the Hippo pathway via phosphorylation of LATS1/2 and subsequent reduction in YAP levels and YAP/TAZ target genes. These results identify BMI1 as a potential therapeutic vulnerability in ARMS and warrant further investigation of BMI1 in ARMS and other sarcomas.


Cell Proliferation/physiology , Epigenesis, Genetic/physiology , Polycomb Repressive Complex 1/physiology , Rhabdomyosarcoma/pathology , Apoptosis/physiology , Cell Line, Tumor , Heterografts , Hippo Signaling Pathway , Humans , Phosphorylation , Polycomb Repressive Complex 1/genetics , RNA Interference , Rhabdomyosarcoma/metabolism
7.
Biol Open ; 10(2)2021 02 09.
Article En | MEDLINE | ID: mdl-33372065

The development of three-dimensional cell culture techniques has allowed cancer researchers to study the stemness properties of cancer cells in in vitro culture. However, a method to grow PAX3-FOXO1 fusion-positive rhabdomyosarcoma (FP-RMS), an aggressive soft tissue sarcoma of childhood, has to date not been reported, hampering efforts to identify the dysregulated signaling pathways that underlie FP-RMS stemness. Here, we first examine the expression of canonical stem cell markers in human RMS tumors and cell lines. We then describe a method to grow FP-RMS cell lines as rhabdospheres and demonstrate that these spheres are enriched in expression of canonical stemness factors as well as Notch signaling components. Specifically, FP-RMS rhabdospheres have increased expression of SOX2, POU5F1 (OCT4), and NANOG, and several receptors and transcriptional regulators in the Notch signaling pathway. FP-RMS rhabdospheres also exhibit functional stemness characteristics including multipotency, increased tumorigenicity in vivo, and chemoresistance. This method provides a novel practical tool to support research into FP-RMS stemness and chemoresistance signaling mechanisms.


Neoplastic Stem Cells/metabolism , Receptors, Notch/metabolism , Rhabdomyosarcoma, Alveolar/metabolism , Rhabdomyosarcoma, Alveolar/pathology , Signal Transduction , Biomarkers , Cell Culture Techniques , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Neoplastic Stem Cells/pathology
8.
Cell Rep ; 28(11): 2837-2850.e5, 2019 09 10.
Article En | MEDLINE | ID: mdl-31509746

Cellular heterogeneity is frequently observed in cancer, but the biological significance of heterogeneous tumor clones is not well defined. Using multicolor reporters and CRISPR-Cas9 barcoding, we trace clonal dynamics in a mouse model of sarcoma. We show that primary tumor growth is associated with a reduction in clonal heterogeneity. Local recurrence of tumors following surgery or radiation therapy is driven by multiple clones. In contrast, advanced metastasis to the lungs is driven by clonal selection of a single metastatic clone (MC). Using RNA sequencing (RNA-seq) and in vivo assays, we identify candidate suppressors of metastasis, namely, Rasd1, Reck, and Aldh1a2. These genes are downregulated in MCs of the primary tumors prior to the formation of metastases. Overexpression of these suppressors of metastasis impair the ability of sarcoma cells to colonize the lungs. Overall, this study reveals clonal dynamics during each step of tumor progression, from initiation to growth, recurrence, and distant metastasis.


Clonal Evolution/genetics , Clone Cells/metabolism , Neoplasm Recurrence, Local/metabolism , Sarcoma/metabolism , Sarcoma/secondary , Aldehyde Dehydrogenase 1 Family/genetics , Aldehyde Dehydrogenase 1 Family/metabolism , Animals , Cell Lineage , Clone Cells/cytology , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Luminescent Proteins , Mice , Mice, Nude , Neoplasm Recurrence, Local/genetics , RNA-Seq , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/metabolism , Sarcoma/genetics , Sarcoma/pathology , Transcriptome/genetics , ras Proteins/genetics , ras Proteins/metabolism
9.
Cancer Res ; 78(19): 5513-5520, 2018 10 01.
Article En | MEDLINE | ID: mdl-30093562

A hallmark of fusion-positive alveolar rhabdomyosarcoma (aRMS) is the presence of a chromosomal translocation encoding the PAX3-FOXO1 fusion oncogene. Primary cell-based modeling experiments have shown that PAX3-FOXO1 is necessary, but not sufficient for aRMS tumorigenesis, indicating additional molecular alterations are required to initiate and sustain tumor growth. Previously, we showed that PAX3-FOXO1-positive aRMS is promoted by dysregulated Hippo pathway signaling, as demonstrated by increased YAP1 expression and decreased MST activity. We hypothesized that ablating MST/Hippo signaling in a genetically engineered mouse model (GEMM) of aRMS would accelerate tumorigenesis. To this end, MST1/2-floxed (Stk3F/F;Stk4F/F ) mice were crossed with a previously established aRMS GEMM driven by conditional expression of Pax3:Foxo1 from the endogenous Pax3 locus and conditional loss of Cdkn2a in Myf6 (myogenic factor 6)-expressing cells. Compared with Pax3PF/PF;Cdkn2aF/F;Myf6ICN/+ controls, Stk3F/F;Stk4F/F;Pax3PF/PF;Cdkn2aF/F;Myf6ICN/+ animals displayed accelerated tumorigenesis (P < 0.0001) and increased tumor penetrance (88% vs. 27%). GEMM tumors were histologically consistent with aRMS. GEMM tumor-derived cell lines showed increased proliferation and invasion and decreased senescence and myogenic differentiation. These data suggest that loss of MST/Hippo signaling acts with Pax3:Foxo1 expression and Cdkn2a loss to promote tumorigenesis. The rapid onset and increased penetrance of tumorigenesis in this model provide a powerful tool for interrogating aRMS biology and screening novel therapeutics.Significance: A novel mouse model sheds light on the critical role of Hippo/MST downregulation in PAX3-FOXO1-positive rhabdomyosarcoma tumorigenesis. Cancer Res; 78(19); 5513-20. ©2018 AACR.


Forkhead Box Protein O1/metabolism , MAP Kinase Kinase Kinases/metabolism , PAX3 Transcription Factor/metabolism , Protein Serine-Threonine Kinases/metabolism , Rhabdomyosarcoma, Alveolar/genetics , Rhabdomyosarcoma, Alveolar/metabolism , Animals , Carcinogenesis , Cell Differentiation , Cell Line , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cellular Senescence , Crosses, Genetic , Disease Models, Animal , Down-Regulation , Gene Expression Regulation, Neoplastic , Genetic Engineering , Hippo Signaling Pathway , Humans , Mice , Mice, Inbred C57BL , Neoplasm Invasiveness , Oncogene Proteins, Fusion/genetics , Oncogenes , Signal Transduction
10.
Clin Cancer Res ; 24(11): 2616-2630, 2018 06 01.
Article En | MEDLINE | ID: mdl-29514840

Purpose: Alveolar rhabdomyosarcoma (aRMS) is a childhood soft tissue sarcoma driven by the signature PAX3-FOXO1 (P3F) fusion gene. Five-year survival for aRMS is <50%, with no improvement in over 4 decades. Although the transcriptional coactivator TAZ is oncogenic in carcinomas, the role of TAZ in sarcomas is poorly understood. The aim of this study was to investigate the role of TAZ in P3F-aRMS tumorigenesis.Experimental Design: After determining from publicly available datasets that TAZ is upregulated in human aRMS transcriptomes, we evaluated whether TAZ is also upregulated in our myoblast-based model of P3F-initiated tumorigenesis, and performed IHC staining of 63 human aRMS samples from tissue microarrays. Using constitutive and inducible RNAi, we examined the impact of TAZ loss of function on aRMS oncogenic phenotypes in vitro and tumorigenesis in vivo Finally, we performed pharmacologic studies in aRMS cell lines using porphyrin compounds, which interfere with TAZ-TEAD transcriptional activity.Results: TAZ is upregulated in our P3F-initiated aRMS model, and aRMS cells and tumors have high nuclear TAZ expression. In vitro, TAZ suppression inhibits aRMS cell proliferation, induces apoptosis, supports myogenic differentiation, and reduces aRMS cell stemness. TAZ-deficient aRMS cells are enriched in G2-M phase of the cell cycle. In vivo, TAZ suppression attenuates aRMS xenograft tumor growth. Preclinical studies show decreased aRMS xenograft tumor growth with porphyrin compounds alone and in combination with vincristine.Conclusions: TAZ is oncogenic in aRMS sarcomagenesis. While P3F is currently not therapeutically tractable, targeting TAZ could be a promising novel approach in aRMS. Clin Cancer Res; 24(11); 2616-30. ©2018 AACR.


Cell Transformation, Neoplastic/metabolism , Rhabdomyosarcoma, Alveolar/metabolism , Transcription Factors/metabolism , Acyltransferases , Animals , Apoptosis/genetics , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Disease Models, Animal , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Mice , Myoblasts/metabolism , PAX3 Transcription Factor/genetics , PAX3 Transcription Factor/metabolism , Rhabdomyosarcoma, Alveolar/genetics , Trans-Activators , Transcription Factors/genetics , Transcriptional Activation , Transcriptional Coactivator with PDZ-Binding Motif Proteins
...