Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(3): e3002539, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38470935

RESUMEN

GABAergic inhibitory neurons fundamentally shape the activity and plasticity of cortical circuits. A major subset of these neurons contains somatostatin (SOM); these cells play crucial roles in neuroplasticity, learning, and memory in many brain areas including the hippocampus, and are implicated in several neuropsychiatric diseases and neurodegenerative disorders. Two main types of SOM-containing cells in area CA1 of the hippocampus are oriens-lacunosum-moleculare (OLM) cells and hippocampo-septal (HS) cells. These cell types show many similarities in their soma-dendritic architecture, but they have different axonal targets, display different activity patterns in vivo, and are thought to have distinct network functions. However, a complete understanding of the functional roles of these interneurons requires a precise description of their intrinsic computational properties and their synaptic interactions. In the current study we generated, analyzed, and make available several key data sets that enable a quantitative comparison of various anatomical and physiological properties of OLM and HS cells in mouse. The data set includes detailed scanning electron microscopy (SEM)-based 3D reconstructions of OLM and HS cells along with their excitatory and inhibitory synaptic inputs. Combining this core data set with other anatomical data, patch-clamp electrophysiology, and compartmental modeling, we examined the precise morphological structure, inputs, outputs, and basic physiological properties of these cells. Our results highlight key differences between OLM and HS cells, particularly regarding the density and distribution of their synaptic inputs and mitochondria. For example, we estimated that an OLM cell receives about 8,400, whereas an HS cell about 15,600 synaptic inputs, about 16% of which are GABAergic. Our data and models provide insight into the possible basis of the different functionality of OLM and HS cell types and supply essential information for more detailed functional models of these neurons and the hippocampal network.


Asunto(s)
Hipocampo , Interneuronas , Ratones , Animales , Hipocampo/fisiología , Interneuronas/fisiología , Neuronas , Somatostatina
2.
PLoS Biol ; 21(6): e3002154, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37289847

RESUMEN

Fear-related memory traces are encoded by sparse populations of hippocampal principal neurons that are recruited based on their inhibitory-excitatory balance during memory formation. Later, the reactivation of the same principal neurons can recall the memory. The details of this mechanism are still unclear. Here, we investigated whether disinhibition could play a major role in this process. Using optogenetic behavioral experiments, we found that when fear was associated with the inhibition of mouse hippocampal somatostatin positive interneurons, the re-inhibition of the same interneurons could recall fear memory. Pontine nucleus incertus neurons selectively inhibit hippocampal somatostatin cells. We also found that when fear was associated with the activity of these incertus neurons or fibers, the reactivation of the same incertus neurons or fibers could also recall fear memory. These incertus neurons showed correlated activity with hippocampal principal neurons during memory recall and were strongly innervated by memory-related neocortical centers, from which the inputs could also control hippocampal disinhibition in vivo. Nonselective inhibition of these mouse hippocampal somatostatin or incertus neurons impaired memory recall. Our data suggest a novel disinhibition-based memory mechanism in the hippocampus that is supported by local somatostatin interneurons and their pontine brainstem inputs.


Asunto(s)
Interneuronas , Memoria , Ratones , Animales , Interneuronas/metabolismo , Memoria/fisiología , Hipocampo/metabolismo , Miedo/fisiología , Somatostatina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...