Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Sensors (Basel) ; 23(20)2023 Oct 18.
Article En | MEDLINE | ID: mdl-37896641

This paper presents the concept of a novel adaptable sensing solution currently being developed under the EU Commission-founded PHOTONGATE project. This concept will allow for the quantification of multiple analytes of the same or different nature (chemicals, metals, bacteria, etc.) in a single test with levels of sensitivity and selectivity at/or over those offered by current solutions. PHOTONGATE relies on two core technologies: a biochemical technology (molecular gates), which will confer the specificity and, therefore, the capability to be adaptable to the analyte of interest, and which, combined with porous substrates, will increase the sensitivity, and a photonic technology based on localized surface plasmonic resonance (LSPR) structures that serve as transducers for light interaction. Both technologies are in the micron range, facilitating the integration of multiple sensors within a small area (mm2). The concept will be developed for its application in health diagnosis and food safety sectors. It is thought of as an easy-to-use modular concept, which will consist of the sensing module, mainly of a microfluidics cartridge that will house the photonic sensor, and a platform for fluidic handling, optical interrogation, and signal processing. The platform will include a new optical concept, which is fully European Union Made, avoiding optical fibers and expensive optical components.


Metals , Surface Plasmon Resonance , Metals/chemistry , Optics and Photonics , Bacteria , Optical Fibers
2.
Sensors (Basel) ; 22(14)2022 Jul 20.
Article En | MEDLINE | ID: mdl-35891081

Porous materials are currently the basis of many optical sensors because of their ability to provide a higher interaction between the light and the analyte, directly within the optical structure. In this study, mesoporous TiO2 layers were fabricated using a bottom-up synthesis approach in order to develop optical sensing structures. In comparison with more typical top-down fabrication strategies where the bulk constitutive material is etched in order to obtain the required porous medium, the use of a bottom-up fabrication approach potentially allows increasing the interconnectivity of the pore network, hence improving the surface and depth homogeneity of the fabricated layer and reducing production costs by synthesizing the layers on a larger scale. The sensing performance of the fabricated mesoporous TiO2 layers was assessed by means of the measurement of several glucose dilutions in water, estimating a limit of detection even below 0.15 mg/mL (15 mg/dL). All of these advantages make this platform a very promising candidate for the development of low-cost and high-performance optical sensors.


Glucose , Titanium , Porosity , Titanium/chemistry
3.
Nanomaterials (Basel) ; 10(3)2020 Mar 05.
Article En | MEDLINE | ID: mdl-32150817

Nanomaterials with very specific features (purity, colloidal stability, composition, size, shape, location…) are commonly requested by cutting-edge technologic applications, and hence a sustainable process for the mass-production of tunable/engineered nanomaterials would be desirable. Despite this, tuning nano-scale features when scaling-up the production of nanoparticles/nanomaterials has been considered the main technological barrier for the development of nanotechnology. Aimed at overcoming these challenging frontier, a new gas-phase reactor design providing a shorter residence time, and thus a faster quenching of nanoclusters growth, is proposed for the green, sustainable, versatile, cost-effective, and scalable manufacture of ultrapure engineered nanomaterials (ranging from nanoclusters and nanoalloys to engineered nanostructures) with a tunable degree of agglomeration, composition, size, shape, and location. This method enables: (1) more homogeneous, non-agglomerated ultrapure Au-Ag nanoalloys under 10 nm; (2) 3-nm non-agglomerated ultrapure Au nanoclusters with lower gas flow rates; (3) shape-controlled Ag NPs; and (4) stable Au and Ag engineered nanostructures: nanodisks, nanocrosses, and 3D nanopillars. In conclusion, this new approach paves the way for the green and sustainable mass-production of ultrapure engineered nanomaterials.

4.
Inorg Chem ; 47(18): 8267-77, 2008 Sep 15.
Article En | MEDLINE | ID: mdl-18700753

Nanoparticulated bimodal porous silicas (NBSs) with pore systems structured at two length scales (meso- and large-meso-/macropores) have been prepared through a one-pot surfactant-assisted procedure by using a simple template agent and starting from silicon atrane complexes as hydrolytic inorganic precursors. The final bulk materials are constructed by an aggregation of pseudospherical mesoporous primary nanoparticles process, over the course of which the interparticle (textural) large pore system is generated. A fine-tuning of the procedural variables allows not only an adjustment of the processes of nucleation and growth of the primary nanoparticles but also a modulation of their subsequent aggregation. In this way, we achieve good control of the porosity of both the intra- and interparticle pore systems by managing independent variables. We analyze in particular the regulating role played by two physicochemical variables: the critical micelar concentration (cmc) of the surfactant and the dielectric constant of the reaction medium.

5.
Chem Commun (Camb) ; (4): 330-1, 2002 Feb 21.
Article En | MEDLINE | ID: mdl-12120059

Porous pure and doped silicas with pore sizes at two length scales (meso/macroporous) have been prepared and shaped both as powders and monoliths through a one-pot surfactant assisted procedure by using a simple template agent and starting from atrane complexes as inorganic precursors.

...