Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Microb Ecol ; 87(1): 76, 2024 May 27.
Article En | MEDLINE | ID: mdl-38801423

Modern crop production relies on the application of chemical pesticides and fertilizers causing environmental and economic challenges. In response, less environmentally impactful alternatives have emerged such as the use of beneficial microorganisms. These microorganisms, particularly plant growth-promoting bacteria (PGPB), have demonstrated their ability to enhance plant growth, protect against various stresses, and reduce the need for chemical inputs. Among the PGPB, Bacillus species have garnered attention due to their adaptability and commercial potential. Recent reports have highlighted Bacillus strains as biocontrol agents against phytopathogenic bacteria while concurrently promoting plant growth. We also examined Bacillus plant growth-promoting abilities in Arabidopsis thaliana seedlings. In this study, we assessed the potential of various Bacillus strains to control diverse phytopathogenic bacteria and inhibit quorum sensing using Chromobacterium violaceum as a model system. In conclusion, our results suggest that bacteria of the genus Bacillus hold significant potential for biotechnological applications. This includes developments aimed at reducing agrochemical use, promoting sustainable agriculture, and enhancing crop yield and protection.


Arabidopsis , Bacillus , Plant Diseases , Bacillus/physiology , Arabidopsis/microbiology , Arabidopsis/growth & development , Plant Diseases/prevention & control , Plant Diseases/microbiology , Quorum Sensing , Chromobacterium/physiology , Chromobacterium/growth & development , Biological Control Agents/pharmacology , Plant Development , Seedlings/microbiology , Seedlings/growth & development , Soil Microbiology
2.
J Plant Physiol ; 297: 154259, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705079

Management of the plant microbiome may help support food needs for the human population. Bacteria influence plants through enhancing nutrient uptake, metabolism, photosynthesis, biomass production and/or reinforcing immunity. However, information into how these microbes behave under different growth conditions is missing. In this work, we tested how carbon supplements modulate the interaction of Pseudomonas chlororaphis with Arabidopsis thaliana. P. chlororaphis streaks strongly repressed primary root growth, lateral root formation and ultimately, biomass production. Noteworthy, increasing sucrose availability into the media from 0 to 2.4% restored plant growth and promoted lateral root formation in bacterized seedlings. This effect could not be observed by supplementing sucrose to leaves only, indicating that the interaction was strongly modulated by bacterial access to sugar. Total phenazine content decreased in the bacteria grown in high (2.4%) sucrose medium, and conversely, the expression of phzH and pslA genes were diminished by sugar supply. Pyocyanin antagonized the promoting effects of sucrose in lateral root formation and biomass production in inoculated seedlings, indicating that this virulence factor accounts for growth repression during the plant-bacterial interaction. Defence reporter transgenes PR-1::GUS and LOX2::GUS were induced in leaves, while the expression of the auxin-inducible, synthetic reporter gene DR5::GUS was enhanced in the roots of bacterized seedlings at low and high sucrose treatments, which suggests that growth/defence trade-offs in plants are critically modulated by P. chlororaphis. Collectively, our data suggest that bacterial carbon nutrition controls the outcome of the relation with plants.


Arabidopsis , Indoleacetic Acids , Phenazines , Plant Roots , Pseudomonas chlororaphis , Sucrose , Sucrose/metabolism , Arabidopsis/microbiology , Arabidopsis/metabolism , Arabidopsis/genetics , Plant Roots/microbiology , Plant Roots/metabolism , Pseudomonas chlororaphis/metabolism , Phenazines/metabolism , Indoleacetic Acids/metabolism
3.
Planta ; 258(4): 80, 2023 Sep 16.
Article En | MEDLINE | ID: mdl-37715847

MAIN CONCLUSION: In P. aeruginosa, mutation of the gene encoding N-acyl-L-homoserine lactone synthase LasI drives defense and plant growth promotion, and this latter trait requires adequate nitrate nutrition. Cross-kingdom communication with bacteria is crucial for plant growth and productivity. Here, we show a strong induction of genes for nitrate uptake and assimilation in Arabidopsis seedlings co-cultivated with P. aeruginosa WT (PAO1) or ΔlasI mutants defective on the synthesis of the quorum-sensing signaling molecule N-(3-oxododecanoyl)-L-homoserine lactone. Along with differential induction of defense-related genes, the change from plant growth repression to growth promotion upon bacterial QS disruption, correlated with upregulation of the dual-affinity nitrate transceptor CHL1/AtNRT1/NPF6.3 and the nitrate reductases NIA1 and NIA2. CHL1-GUS was induced in Arabidopsis primary root tips after transfer onto P. aeruginosa ΔlasI streaks at low and high N availability, whereas this bacterium required high concentrations of nitrogen to potentiate root and shoot biomass production and to improve root branching. Arabidopsis chl1-5 and chl1-12 mutants and double mutants in NIA1 and NIA2 nitrate reductases showed compromised growth under low nitrogen availability and failed to mount an effective growth promotion and root branching response even at high NH4NO3. WT P. aeruginosa PAO1 and P. aeruginosa ΔlasI mutant promoted the accumulation of nitric oxide (NO) in roots of both the WT and nia1nia2 double mutants, whereas NO donors SNP or SNAP did not improve growth or root branching in nia1nia2 double mutants with or without bacterial cocultivation. Thus, inoculation of Arabidopsis roots with P. aeruginosa drives gene expression for improved nitrogen acquisition and this macronutrient is critical for the plant growth-promoting effects upon disruption of the LasI quorum-sensing system.


Arabidopsis Proteins , Arabidopsis , Nitrates , Pseudomonas aeruginosa/genetics , Arabidopsis/genetics , Lactones , Acyl-Butyrolactones , Nitrate Reductases , Nitric Oxide , Arabidopsis Proteins/genetics , Nitrate Reductase/genetics
4.
Microb Ecol ; 85(4): 1396-1411, 2023 May.
Article En | MEDLINE | ID: mdl-35357520

Plants interact with a great diversity of microorganisms or insects throughout their life cycle in the environment. Plant and insect interactions are common; besides, a great variety of microorganisms associated with insects can induce pathogenic damage in the host, as mutualist phytopathogenic fungus. However, there are other microorganisms present in the insect-fungal association, whose biological/ecological activities and functions during plant interaction are unknown. In the present work evaluated, the role of microorganisms associated with Xyleborus affinis, an important beetle species within the Xyleborini tribe, is characterized by attacking many plant species, some of which are of agricultural and forestry importance. We isolated six strains of microorganisms associated with X. affinis shown as plant growth-promoting activity and altered the root system architecture independent of auxin-signaling pathway in Arabidopsis seedlings and antifungal activity against the phytopathogenic fungus Fusarium sp. INECOL_BM-06. In addition, evaluating the tripartite interaction plant-microorganism-fungus, interestingly, we found that microorganisms can induce protection against the phytopathogenic fungus Fusarium sp. INECOL_BM-06 involving the jasmonic acid-signaling pathway and independent of salicylic acid-signaling pathway. Our results showed the important role of this microorganisms during the plant- and insect-microorganism interactions, and the biological potential use of these microorganisms as novel agents of biological control in the crops of agricultural and forestry is important.


Arabidopsis , Coleoptera , Fusarium , Weevils , Animals , Antifungal Agents/metabolism , Seedlings/microbiology , Arabidopsis/microbiology , Weevils/microbiology , Insecta , Plant Diseases/microbiology
5.
Microb Ecol ; 86(1): 431-445, 2023 Jul.
Article En | MEDLINE | ID: mdl-35867140

The interaction of plants with bacteria and the long-term success of their adaptation to challenging environments depend upon critical traits that include nutrient solubilization, remodeling of root architecture, and modulation of host hormonal status. To examine whether bacterial promotion of phosphate solubilization, root branching and the host auxin response may account for plant growth, we isolated and characterized ten bacterial strains based on their high capability to solubilize calcium phosphate. All strains could be grouped into six Pseudomonas species, namely P. brassicae, P. baetica, P. laurylsulfatiphila, P. chlororaphis, P. lurida, and P. extremorientalis via 16S rRNA molecular analyses. A Solibacillus isronensis strain was also identified, which remained neutral when interacting with Arabidopsis roots, and thus could be used as inoculation control. The interaction of Arabidopsis seedlings with bacterial streaks from pure cultures in vitro indicated that their phytostimulation properties largely differ, since P. brassicae and P. laurylsulfatiphila strongly increased shoot and root biomass, whereas the other species did not. Most bacterial isolates, except P. chlororaphis promoted lateral root formation, and P. lurida and P. chlororaphis strongly enhanced expression of the auxin-inducible gene construct DR5:GUS in roots, but the most bioactive probiotic bacterium P. brassicae could not enhance the auxin response. Inoculation with P. brassicae and P. lurida improved shoot and root growth in medium supplemented with calcium phosphate as the sole Pi source. Collectively, our data indicate the differential responses of Arabidopsis seedlings to inoculation with several Pseudomonas species and highlight the potential of P. brassicae to manage phosphate nutrition and plant growth in a more eco-friendly manner.


Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Pseudomonas/genetics , Seedlings , Phosphates/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Plant Roots/microbiology , Indoleacetic Acids/metabolism , Bacteria/genetics
6.
Protoplasma ; 259(4): 835-854, 2022 Jul.
Article En | MEDLINE | ID: mdl-34529144

Microbial volatile organic compounds (mVOCs) play important roles in inter- and intra-kingdom interactions, and they are also important as signal molecules in physiological processes acting either as plant growth-promoting or negatively modulating plant development. We investigated the effects of mVOCs emitted by PGPR vs non-PGPR from avocado trees (Persea americana) on growth of Arabidopsis thaliana seedlings. Chemical diversity of mVOCs was determined by SPME-GC-MS; selected compounds were screened in dose-response experiments in A. thaliana transgenic lines. We found that plant growth parameters were affected depending on inoculum concentration. Twenty-six compounds were identified in PGPR and non-PGPR with eight of them not previously reported. The VOCs signatures were differential between those groups. 4-methyl-2-pentanone, 1-nonanol, 2-phenyl-2-propanol and ethyl isovalerate modified primary root architecture influencing the expression of auxin- and JA-responsive genes, and cell division. Lateral root formation was regulated by 4-methyl-2-pentanone, 3-methyl-1-butanol, 1-nonanol and ethyl isovalerate suggesting a participation via JA signalling. Our study revealed the differential emission of volatiles by PGPR vs non-PGPR from avocado trees and provides a general view about the mechanisms by which those volatiles influence plant growth and development. Rhizobacteria strains and mVOCs here reported are promising for improvement the growth and productivity of avocado crop.


Arabidopsis , Persea , Volatile Organic Compounds , Indoleacetic Acids/pharmacology , Persea/microbiology , Plant Development , Trees
7.
Protoplasma ; 259(5): 1139-1155, 2022 Sep.
Article En | MEDLINE | ID: mdl-34792622

The interaction of plant roots with bacteria is influenced by chemical signaling, where auxins play a critical role. Auxins exert positive or negative influences on the plant traits responsible of root architecture configuration such as root elongation and branching and root hair formation, but how bacteria that modify the plant auxin response promote or repress growth, as well as root structure, remains unknown. Here, we isolated and identified via molecular and electronic microscopy analysis a Micrococcus luteus LS570 strain as a plant growth promoter that halts primary root elongation in Arabidopsis seedlings and strongly triggers root branching and absorptive potential. The root biomass was exacerbated following root contact with bacterial streaks, and this correlated with inducible expression of auxin-related gene markers DR5:GUS and DR5:GFP. Cellular and structural analyses of root growth zones indicated that the bacterium inhibits both cell division and elongation within primary root tips, disrupting apical dominance, and as a consequence differentiation programs at the pericycle and epidermis, respectively, triggers the formation of longer and denser lateral roots and root hairs. Using Arabidopsis mutants defective on auxin signaling elements, our study uncovers a critical role of the auxin response factors ARF7 and ARF19, and canonical auxin receptors in mediating both the primary root and lateral root response to M. luteus LS570. Our report provides very basic information into how actinobacteria interact with plants and direct evidence that the bacterial genus Micrococcus influences the cellular and physiological plant programs ultimately responsible of biomass partitioning.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Micrococcus luteus/metabolism , Plant Roots/metabolism
8.
Photochem Photobiol Sci ; 19(10): 1423-1432, 2020 Oct 14.
Article En | MEDLINE | ID: mdl-32970082

A series of water soluble 8-alcoxypyrene-1,3,6-trisulfonic sodium salts bearing different alcoxy lateral chains and functional end groups was synthesized and the molecular structure was corroborated by nuclear magnetic resonance spectroscopy. The photophysical properties in water analyzed by UV-Vis and static and dynamic fluorescence revealed that all of the pigments emit in the blue region at a maximal wavelength of 436 nm and with fluorescence lifetimes in the range of ns. Among them, sodium 8-((10-carboxydecyl) oxy) pyrene-1,3,6-trisulfonate M1 exhibits a high fluorescence quantum yield (φ = 80%) and a good interaction with B. subtilis LPM1 rhizobacteria; this has been demonstrated through in vitro staining assays. Tomato plants (Solanum lycopersicon cv. Micro-Tom) increased the release of root exudates, mainly malic and fumaric acids, after 12 h of treatment with benzothiadiazole (BTH) as a foliar elicitor. However, the chemotaxis analysis demonstrated that malic acid is the most powerful chemoattractant of the rhizobacteria Bacillus subtilis LPM1: in agar plates, a major growth (60 mm) was found for a concentration of 100 mM, while in capillary tubes, the earliest response was at 30 min with 3.3 × 108 CFU mL-1. The confocal microscopic analysis carried out on the tomato roots of the pyrene stained B. subtilis LPM1 revealed that this bacterium mainly colonizes the epidermal zones, i.e. the junctions to primary roots, lateral roots and root hairs, meaning that these root hair sections are the highest colonisable sites involved in the biosynthesis of exudates. This fluorescent pyrene marker M1 represents a valuable tool to evaluate B. subtilis-plant interactions in an easy and quick test in both in vitro and in vivo tomato crops.


Bacillus subtilis/chemistry , Fluorescence , Fluorescent Dyes/chemistry , Plant Roots/chemistry , Pyrenes/analysis , Solanum lycopersicum/microbiology , Fluorescent Dyes/chemical synthesis , Microscopy, Confocal , Molecular Structure , Spectrometry, Fluorescence
9.
Plant J ; 103(5): 1639-1654, 2020 08.
Article En | MEDLINE | ID: mdl-32445404

Roots provide physical and nutritional support to plant organs that are above ground and play critical roles for adaptation via intricate movements and growth patterns. Through screening the effects of bacterial isolates from roots of halophyte Mesquite (Prosopis sp.) on Arabidopsis thaliana, we identified Achromobacter sp. 5B1 as a probiotic bacterium that influences plant functional traits. Detailed genetic and architectural analyses in Arabidopsis grown in vitro and in soil, cell division measurements, auxin transport and response gene expression and brefeldin A treatments demonstrated that root colonization with Achromobacter sp. 5B1 changes the growth and branching patterns of roots, which were related to auxin perception and redistribution. Expression analysis of auxin transport and signaling revealed a redistribution of auxin within the primary root tip of wild-type seedlings by Achromobacter sp. 5B1 that is disrupted by brefeldin A and correlates with repression of auxin transporters PIN1 and PIN7 in root provasculature, and PIN2 in the epidermis and cortex of the root tip, whereas expression of PIN3 was enhanced in the columella. In seedlings harboring AUX1, EIR1, AXR1, ARF7ARF19, TIR1AFB2AFB3 single, double or triple loss-of-function mutations, or in a dominant (gain-of-function) mutant of SLR1, the bacterium caused primary roots to form supercoils that are devoid of lateral roots. The changes in growth and root architecture elicited by the bacterium helped Arabidopsis seedlings to resist salt stress better. Thus, Achromobacter sp. 5B1 fine tunes both root movements and the auxin response, which may be important for plant growth and environmental adaptation.


Achromobacter/metabolism , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Plant Roots/microbiology , Achromobacter/drug effects , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis/microbiology , Brefeldin A/pharmacology , Cell Division , Meristem/growth & development , Meristem/microbiology , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Signal Transduction
10.
PLoS One ; 15(4): e0231215, 2020.
Article En | MEDLINE | ID: mdl-32267901

Plants interact with a great variety of microorganisms that inhabit the rhizosphere or the epiphytic and endophytic phyllosphere and that play critical roles in plant growth as well as the biocontrol of phytopathogens and insect pests. Avocado fruit damage caused by the thrips species Scirtothrips perseae leads to economic losses of 12-51% in many countries. In this study, a screening of bacteria associated with the rhizosphere or endophytic phyllosphere of avocado roots was performed to identify bacterial isolates with plant growth-promoting activity in vitro assays with Arabidopsis seedlings and to assess the biocontrol activity of the isolates against Scirtothrips perseae. The isolates with beneficial, pathogenic and/or neutral effects on Arabidopsis seedlings were identified. The plant growth-promoting bacteria were clustered in two different groups (G1 and G3B) based on their effects on root architecture and auxin responses, particularly bacteria of the Pseudomonas genus (MRf4-2, MRf4-4 and TRf2-7) and one Serratia sp. (TS3-6). Twenty strains were selected based on their plant growth promotion characteristics to evaluate their potential as thrips biocontrol agents. Analyzing the biocontrol activity of S. perseae, it was identified that Chryseobacterium sp. shows an entomopathogenic effect on avocado thrips survival. Through the metabolic profiling of compounds produced by bacteria with plant growth promotion activity, bioactive cyclodipeptides (CDPs) that could be responsible for the plant growth-promoting activity in Arabidopsis were identified in Pseudomonas, Serratia and Stenotrophomonas. This study unravels the diversity of bacteria from the avocado rhizosphere and highlights the potential of a unique isolate to achieve the biocontrol of S. perseae.


Insect Control/methods , Persea/growth & development , Persea/microbiology , Pest Control, Biological/methods , Thysanoptera/microbiology , Trees/growth & development , Trees/microbiology , Animals , Arabidopsis/physiology , Coculture Techniques , DNA, Bacterial/genetics , Indoleacetic Acids/metabolism , Phylogeny , Pseudomonas/metabolism , Rhizosphere , Seedlings/metabolism , Serratia/metabolism , Stenotrophomonas/metabolism
11.
Genet Mol Biol ; 43(1): e20190221, 2020.
Article En | MEDLINE | ID: mdl-32105289

Auxin regulates a plethora of events during plant growth and development, acting in concert with other phytohormones. YUCCA genes encode flavin monooxygenases that function in tryptophan-dependent auxin biosynthesis. To understand the contribution of the YUCCA4 (YUC4) gene on auxin homeostasis, plant growth and interaction with abscisic acid (ABA) signaling, 35S::YUC4 seedlings were generated, which showed elongated hypocotyls with hyponastic leaves and changes in root system architecture that correlate with enhanced auxin responsive gene expression. Differential expression of PIN1, 2, 3 and 7 auxin transporters was detected in roots of YUC4 overexpressing seedlings compared to the wild-type: PIN1 was down-regulated whereas PIN2, PIN3 and PIN7 were up-regulated. Noteworthy, 35S::YUC4 lines showed enhanced sensitivity to ABA on seed germination and post-embryonic root growth, involving ABI4 transcription factor. The auxin reporter genes DR5::GUS, DR5::GFP and BA3::GUS further revealed that abscisic acid impairs auxin responses in 35S::YUC4 seedlings. Our results indicate that YUC4 overexpression influences several aspects of auxin homeostasis and reveal the critical roles of ABI4 during auxin-ABA interaction in germination and primary root growth.

12.
Planta ; 251(1): 2, 2019 Nov 27.
Article En | MEDLINE | ID: mdl-31776759

MAIN CONCLUSION: CRK28, a cysteine-rich receptor-like kinase, plays a role in root organogenesis and overall growth of plants and antagonizes abscisic acid response in seed germination and primary root growth. Receptor-like kinases (RLK) orchestrate development and adaptation to environmental changes in plants. One of the largest RLK groups comprises cysteine-rich receptor-like kinases (CRKs), for which the function of most members remains unknown. In this report, we show that the loss of function of CRK28 led to the formation of roots that are longer and more branched than the parental (Col-0) plantlets, and this correlates with an enhanced domain of the mitotic reporter CycB1:uidA in primary root meristems, whereas CRK28 overexpressing lines had the opposite phenotype, including slow root growth and reduced lateral root formation. Epidermal cell analyses revealed that crk28 mutants had reduced root hair length and increased trichome number, whereas 35S::CRK28 lines present primary roots with longer root hairs but lesser trichomes in leaves. The overall growth in soil of crk28 mutant and CRK28 overexpressing lines was reduced or enhanced, respectively, when compared to the parental (Col-0) seedlings, while germination, root growth and expression analyses of ABI3 and ABI5 further showed that CRK28 modulates ABA responses, which may be important to fine-tune plant morphogenesis. Our study unravels the participation of RLK signaling in root growth and epidermal cell differentiation.


Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Protein Serine-Threonine Kinases/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Protein Serine-Threonine Kinases/genetics
13.
Protoplasma ; 256(6): 1657-1666, 2019 Nov.
Article En | MEDLINE | ID: mdl-31273542

The transit from indeterminate to determinate root developmental program compromises growth and causes the differentiation of the meristem, but a direct link between this process with auxin signaling and/or viability of initial cells remains untested. Here, through the isolation and characterization of the halted primary root1 (hpr1) mutant of Arabidopsis, which develops primary and lateral roots with genetically stable determinate growth after germination, we show that the differentiation of the root meristem correlates with enhanced auxin responsiveness and is preceded by the death of provasculature initial cells in both primary and lateral roots. Supplementation of indole-3-acetic acid causes both a dose-dependent repression of primary root growth and an induction of DR5:uidA expression in wild-type seedlings, and these effects were exacerbated in hpr1 mutants. The damage of provasculature initial cells in the root of hpr1 mutants occurred at earlier times than the full differentiation of the meristem, and correlates with a reduced expression domain of CycB1:uidA and PRZ:uidA. Thus, HPR1 plays critical functions for stem cell maintenance, auxin homeostasis, cell division in the meristem, and indeterminate root growth.


Arabidopsis Proteins/chemistry , Indoleacetic Acids/metabolism , Plant Roots/chemistry
14.
Plant Sci ; 284: 135-142, 2019 Jul.
Article En | MEDLINE | ID: mdl-31084866

Bacteria rely on chemical communication to sense the environment and to retrieve information on their population densities. Accordingly, a vast repertoire of molecules is released, which synchronizes expression of genes, coordinates behavior through a process termed quorum-sensing (QS), and determines the relationships with eukaryotic species. Already identified QS molecules from Gram negative bacteria can be grouped into two main classes, N-acyl-L-homoserine lactones (AHLs) and cyclodipeptides (CDPs), with roles in biofilm formation, bacterial virulence or symbiotic interactions. Noteworthy, plants detect each of these molecules, change their own gene expression programs, re-configurate root architecture, and activate defense responses, improving in this manner their adaptation to natural and agricultural ecosystems. AHLs may act as alarm signals, pathogen and/or microbe-associated molecular patterns, whereas CDPs function as hormonal mimics for plants via their putative interactions with the auxin receptor Transport Inhibitor Response1 (TIR1). A major challenge is to identify the molecular pathways of QS-mediated crosstalk and the plant receptors and interacting proteins for AHLs, CDPs and related signals.


Plant Roots/microbiology , Quorum Sensing/physiology , Rhizobiaceae/metabolism , Host-Pathogen Interactions , Plant Roots/anatomy & histology , Plant Roots/physiology
15.
Plant Sci ; 280: 175-186, 2019 Mar.
Article En | MEDLINE | ID: mdl-30823995

The plant hormone ethylene induces auxin biosynthesis and transport and modulates root growth and branching. However, its function on root stem cells and the identity of interacting factors for the control of meristem activity remains unclear. Genetic analysis for primary root growth in wild-type (WT) Arabidopsis thaliana seedlings and ethylene-related mutants showed that the loss-of-function of CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) inhibits cell division and elongation. This phenotype is associated with an increase in the expression of the auxin transporter PIN2 and a drastic decrease in the expression of key factors for stem cell niche maintenance such as PLETHORA1, SHORT ROOT and SCARECROW. While the root stem cell niche is affected in ctr1 mutants, its maintenance is severely compromised in the ctr1-1eir1-1(pin2) double mutant, in which an evident loss of proliferative capacity of the meristematic cells leads to a fully differentiated root meristem shortly after germination. Root traits affected in ctr1-1 mutants could be restored in ctr1-1ein2-1 double mutants. These results reveal that ethylene perception via CTR1 and EIN2 in the root modulates the proliferative capacity of root stem cells via affecting the expression of genes involved in the two major pathways, AUX-PIN-PLT and SCR-SHR, which are key factors for proper root stem cell niche maintenance.


Arabidopsis Proteins/metabolism , Seedlings/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Ethylenes/metabolism , Meristem/metabolism , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Plants, Genetically Modified/metabolism , Signal Transduction/physiology
16.
BMC Genomics ; 19(1): 721, 2018 Oct 01.
Article En | MEDLINE | ID: mdl-30285612

BACKGROUND: The Ambrosia Fusarium Clade phytopathogenic Fusarium fungi species have a symbiotic relationship with ambrosia beetles in the genus Euwallacea (Coleoptera: Curculionidae). Related beetle species referred to as Euwallacea sp. near fornicatus have been spread in California, USA and are recognized as the causal agents of Fusarium dieback, a disease that causes mortality of many plant species. Despite the importance of this fungi, no transcriptomic resources have been generated. The datasets described here represent the first ever transcripts available for these species. We focused our study on the isolated species of Fusarium that is associated with one of the cryptic species referred to as Kuroshio Shot Hole Borer (KSHB) Euwallacea sp. near fornicatus. RESULTS: Hydrogen concentration is a critical signal in fungi for growth and host colonization, the aim of this study was to evaluate the effect of different pH conditions on growth and gene expression of the fungus Fusarium sp. associated with KSHB. An RNA-seq approach was used to compare the gene expression of the fungus grown for 2 weeks in liquid medium at three different pH levels (5.0, 6.0, and 7.0). An unbuffered treatment was included to evaluate the capability of the fungus to change the pH of its environment and the impact in gene expression. The results showed that the fungus can grow and modulate its genetic expression at different pH conditions; however, growth was stunted in acidic pH in comparison with neutral pH. The results showed a differential expression pattern in each pH condition even when acidic conditions prevailed at the end of the experiment. After comparing transcriptomics data from the three treatments, we found a total of 4,943 unique transcripts that were differentially expressed. CONCLUSIONS: We identified transcripts related to pH signaling such as the conserved PAL/RIM pathway, some transcripts related to secondary metabolism and other transcripts that were differentially expressed. Our analysis suggests possible mechanisms involved in pathogenicity in this novel Fusarium species. This is the first report that shows transcriptomic data of this pathogen as well as the first report of genes and proteins involved in their metabolism identifying potential virulence factors.


Environment , Fusarium/genetics , Fusarium/physiology , Gene Expression Profiling , Weevils/microbiology , Animals , Fusaric Acid/biosynthesis , Fusarium/growth & development , Fusarium/metabolism , Hydrogen-Ion Concentration , Molecular Sequence Annotation , Phylogeny , Sequence Homology, Nucleic Acid , Symbiosis
17.
Genome Announc ; 5(35)2017 Aug 31.
Article En | MEDLINE | ID: mdl-28860245

Here, we report the genome of Fusarium euwallaceae strain HFEW-16-IV-019, an isolate obtained from Kuroshio shot hole borer (a Euwallacea sp.). These beetles were collected in Tijuana, Mexico, from elm trees showing typical symptoms of Fusarium dieback. The final assembly consists of 287 scaffolds spanning 48,274,071 bp and 13,777 genes.

18.
Microb Ecol ; 73(3): 616-629, 2017 04.
Article En | MEDLINE | ID: mdl-27900439

Diverse molecules mediate cross-kingdom communication between bacteria and their eukaryotic partners and determine pathogenic or symbiotic relationships. N-acyl-L-homoserine lactone-dependent quorum-sensing signaling represses the biosynthesis of bacterial cyclodipeptides (CDPs) that act as auxin signal mimics in the host plant Arabidopsis thaliana. In this work, we performed bioinformatics, biochemical, and plant growth analyses to identify non-ribosomal peptide synthase (NRPS) proteins of Pseudomonas aeruginosa, which are involved in CDP synthesis. A reverse genetics strategy allowed the identification of the genes encoding putative multi-modular-NRPS (MM-NRPS). Mutations in these genes affected the synthesis of the CDPs cyclo(L-Pro-L-Val), cyclo(L-Pro-L-Leu), and cyclo(L-Pro-L-Tyr), while showing wild-type-like levels of virulence factors, such as violacein, elastase, and pyocyanin. When analyzing the bioactivity of purified, naturally produced CDPs, it was found that cyclo(L-Pro-L-Tyr) and cyclo(L-Pro-L-Val) were capable of antagonizing quorum-sensing-LasR (QS-LasR)-dependent signaling in a contrasting manner in the cell-free supernatants of the selected NRPS mutants, which showed QS induction. Using a bacteria-plant interaction system, we further show that the pvdJ, ambB, and pchE P. aeruginosa mutants failed to repress primary root growth, but improved root branching in A. thaliana seedlings. These results indicated that the CDP production in P. aeruginosa depended on the functional MM-NRPS, which influences quorum-sensing of bacteria and plays a role in root architecture remodeling.


Arabidopsis/microbiology , Dipeptides/metabolism , Gene Expression Regulation, Bacterial/genetics , Peptide Biosynthesis, Nucleic Acid-Independent/genetics , Peptides, Cyclic/metabolism , Piperazines/metabolism , Plant Roots/embryology , Pseudomonas aeruginosa/metabolism , Quorum Sensing/physiology , Dipeptides/genetics , Indoleacetic Acids/metabolism , Indoles/metabolism , Peptides, Cyclic/genetics , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics , Pyocyanine/metabolism , Quorum Sensing/genetics , Signal Transduction , Virulence Factors/metabolism
19.
Biometals ; 28(2): 353-65, 2015 Apr.
Article En | MEDLINE | ID: mdl-25702099

Morphological root plasticity optimizes nutrient and water uptake by plants and is a promising target to improve tolerance to metal toxicity. Exposure to sublethal chromate [Cr(VI)] concentrations inhibits root growth, decreases photosynthesis and compromises plant development and productivity. Despite the increasing environmental problem that Cr(VI) represents, to date, the Cr tolerance mechanisms of plants are not well understood, and it remains to be investigated whether root architecture remodelling is important for plant adaptation to Cr(VI) stress. In this report, we analysed the growth response of Arabidopsis thaliana seedlings to concentrations of Cr(VI) that strongly repress primary and lateral root growth. Interestingly, adventitious roots started developing, branched and allowed seedlings to grow under highly growth-repressing Cr(VI) concentrations. Cr(VI) negatively regulates auxin transport and response gene expression in the primary root tip, as evidenced by decreased expression of auxin-related reporters DR5::GFP, DR5::uidA and PIN1::PIN1::GFP, and then, another auxin maximum is established at the site of adventitious root initiation that drives adventitious root organogenesis. Both primary root growth inhibition and adventitious root formation induced by high Cr(VI) levels are blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. These data provide evidence that suggests a critical role for auxin transport and signalling via IAA14/SLR1 in the developmental program linking Cr(VI) to root architecture remodelling.


Arabidopsis/physiology , Chromates/toxicity , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Plant Roots/physiology , Plants, Genetically Modified/physiology , Potassium Compounds/toxicity , Adaptation, Physiological , Arabidopsis/drug effects , Arabidopsis Proteins/metabolism , Membrane Transport Proteins/metabolism , Plant Roots/drug effects , Plants, Genetically Modified/drug effects
20.
Plant Mol Biol ; 86(1-2): 35-50, 2014 Sep.
Article En | MEDLINE | ID: mdl-24928490

Soil contamination by hexavalent chromium [Cr(VI) or chromate] due to anthropogenic activities has become an increasingly important environmental problem. To date few studies have been performed to elucidate the signaling networks involved on adaptive responses to (CrVI) toxicity in plants. In this work, we report that depending upon its concentration, Cr(VI) alters in different ways the architecture of the root system in Arabidopsis thaliana seedlings. Low concentrations of Cr (20-40 µM) promoted primary root growth, while concentrations higher than 60 µM Cr repressed growth and increased formation of root hairs, lateral root primordia and adventitious roots. We analyzed global gene expression changes in seedlings grown in media supplied with 20 or 140 µM Cr. The level of 731 transcripts was significantly modified in response to Cr treatment with only five genes common to both Cr concentrations. Interestingly, 23 genes related to iron (Fe) acquisition were up-regulated including IRT1, YSL2, FRO5, BHLH100, BHLH101 and BHLH039 and the master controllers of Fe deficiency responses PYE and BTS were specifically activated in pericycle cells. It was also found that increasing concentration of Cr in the plant correlated with a decrease in Fe content, but increased both acidification of the rhizosphere and activity of the ferric chelate reductase. Supply of Fe to Cr-treated Arabidopsis allowed primary root to resume growth and alleviated toxicity symptoms, indicating that Fe nutrition is a major target of Cr stress in plants. Our results show that low Cr levels are beneficial to plants and that toxic Cr concentrations activate a low-Fe rescue system.


Arabidopsis/drug effects , Chromates/toxicity , Soil Pollutants/toxicity , Arabidopsis/genetics , Arabidopsis/physiology , Gene Expression Regulation, Plant/drug effects , Homeostasis/drug effects , Iron/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/physiology , Seedlings/drug effects , Seedlings/genetics , Seedlings/physiology , Signal Transduction/drug effects
...