Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Ecol Evol ; 38(4): 369-380, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36428124

RESUMEN

Animals often exhibit consistent-individual differences (CIDs) in boldness/fearfulness, typically studied in the context of predation risk. We focus here on fear generalization, where fear of one danger (e.g., predators) is correlated with fear of other dangers (e.g., humans, pathogens, moving vehicles, or fire). We discuss why fear generalization should be ecologically important, and why we expect fear to correlate across disparate dangers. CIDs in fear are well studied for some dangers in some taxa (e.g., human fear of pathogens), but not well studied for most dangers. Fear of some dangers has been found to correlate with general fearfulness, but some cases where we might expect correlated fears (e.g., between fear of humans, familiar predators, and exotic predators) are surprisingly understudied.


Asunto(s)
Miedo , Conducta Predatoria , Animales , Humanos , Miedo/fisiología
2.
Integr Comp Biol ; 60(1): 57-69, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31960928

RESUMEN

Anthropogenic change has well-documented impacts on stress physiology and behavior across diverse taxonomic groups. Within individual organisms, physiological and behavioral traits often covary at proximate and ultimate timescales. In the context of global change, this means that impacts on physiology can have downstream impacts on behavior, and vice versa. Because all organisms interact with members of their own species and other species within their communities, the effects of humans on one organism can impose indirect effects on one or more other organisms, resulting in cascading effects across interaction networks. Human-induced changes in the stress physiology of one species and the downstream impacts on behavior can therefore interact with the physiological and behavioral responses of other organisms to alter emergent ecological phenomena. Here, we highlight three scenarios in which the stress physiology and behavior of individuals on different sides of an ecological relationship are interactively impacted by anthropogenic change. We discuss host-parasite/pathogen dynamics, predator-prey relationships, and beneficial partnerships (mutualisms and cooperation) in this framework, considering cases in which the effect of stressors on each type of network may be attenuated or enhanced by interactive changes in behavior and physiology. These examples shed light on the ways that stressors imposed at the level of one individual can impact ecological relationships to trigger downstream consequences for behavioral and ecological dynamics. Ultimately, changes in stress physiology on one or both sides of an ecological interaction can mediate higher-level population and community changes due in part to their cascading impacts on behavior. This framework may prove useful for anticipating and potentially mitigating previously underappreciated ecological responses to anthropogenic perturbations in a rapidly changing world.


Asunto(s)
Cadena Alimentaria , Interacciones Huésped-Patógeno/fisiología , Estrés Fisiológico , Simbiosis/fisiología , Interacciones Huésped-Parásitos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...