Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Front Cardiovasc Med ; 11: 1301925, 2024.
Article En | MEDLINE | ID: mdl-38576420

Introduction: It is well-known that circulating microRNAs (miRNAs) play a relevant role in many kinds of diseases by regulating the expression of genes involved in various pathophysiologic processes, including erectile dysfunction (ED) and cardiovascular diseases (CVD). Purpose: This study aimed to identify the miRNA-21 profile in the blood samples of patients with ED, CVD, and the combination of both pathologies to elucidate the potential function of miRNA-21. Methods: A total of 45 patients with CVD and/or who underwent the erectile function test were included and divided into the following categories: CVD with ED (cases, n = 29) and controls (n = 16) with either ED or CVD. Real-time polymerase chain reaction analysis verified the results. miRNA-21 expression was quantified, and informatics analysis was applied to predict the functions of this differentially expressed miRNA-21. Results: A total of 64% of cases (63 ± 9 years, 66% with severe ED, 56% with CV ejection fraction) first presented ED as the sentinel clinical manifestation. Serum miRNA-21 levels in the control ED were significant, up to 10-fold higher than in the CVD controls and cases. A significant inverse (p = 0.0368, ß = -2.046) correlation was found between erectile function and miRNA-21 levels. Conclusions: Our study provides comprehensive insights into the functional interaction between miRNA-21 and ED in CVD patients. Its relevance lies in the potential of miRNA as a biomarker to be applied in the cardiovascular predictive medicine field.

2.
Sci Rep ; 14(1): 4176, 2024 02 20.
Article En | MEDLINE | ID: mdl-38378796

Huntington's disease (HD) is caused by an aberrant expansion of CAG repeats in the HTT gene that mainly affects basal ganglia. Although striatal dysfunction has been widely studied in HD mouse models, other brain areas can also be relevant to the pathology. In this sense, we have special interest on the retina as this is the most exposed part of the central nervous system that enable health monitoring of patients using noninvasive techniques. To establish the retina as an appropriate tissue for HD studies, we need to correlate the retinal alterations with those in the inner brain, i.e., striatum. We confirmed the malfunction of the transgenic R6/1 retinas, which underwent a rearrangement of their transcriptome as extensive as in the striatum. Although tissue-enriched genes were downregulated in both areas, a neuroinflammation signature was only clearly induced in the R6/1 retina in which the observed glial activation was reminiscent of the situation in HD patient's brains. The retinal neuroinflammation was confirmed in the slow progressive knock-in zQ175 strain. Overall, these results demonstrated the suitability of the mouse retina as a research model for HD and its associated glial activation.


Huntington Disease , Mice , Animals , Humans , Huntington Disease/pathology , Mice, Transgenic , Gliosis/genetics , Gliosis/pathology , Microglia/metabolism , Neuroinflammatory Diseases , Disease Models, Animal , Corpus Striatum/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism
3.
New Phytol ; 227(4): 1222-1234, 2020 08.
Article En | MEDLINE | ID: mdl-32259283

Ovules are essential for sexual plant reproduction and seed formation, and are fundamental for agriculture. However, our understanding of the molecular mechanisms governing ovule development is far from complete. In Arabidopsis, ovule identity is determined by homeotic MADS-domain proteins that define the floral C- (AG) and D- (SHP1/SHP2, STK) functions. Pre-mRNA processing of these genes is critical and mediated by HUA-PEP activity, composed of genes encoding RNA-binding proteins. In strong hua-pep mutants, functional transcripts for C- and D-function genes are reduced, resulting in homeotic transformation of ovules. Thus, hua-pep mutants provide an unique sensitized background to study ovule morphogenesis when C- and D-functions are simultaneously compromised. We found that hua-pep ovules are morphologically sepaloid and show ectopic expression of the homeotic class-A gene AP1. Inactivation of AP1 or AP2 (A-function genes) in hua-pep mutants reduced homeotic conversions, rescuing ovule identity while promoting carpelloid traits in transformed ovules. Interestingly, increased AG dosage led to similar results. Our findings strongly suggest that HUA-PEP activity is required for correct C and D floral functions, which in turn prevents ectopic expression of class-A genes in ovules for their proper morphogenesis, evoking the classic A-C antagonism of the ABC model for floral organ development.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Dissection , Gene Expression Regulation, Plant , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Ovule/genetics , Ovule/metabolism , Plant Proteins/genetics
4.
Sci Rep ; 9(1): 1478, 2019 02 06.
Article En | MEDLINE | ID: mdl-30728422

The adaptive success of flowering plants is largely due to their ability to align floral production with optimal conditions. In Arabidopsis thaliana, MADS-box repressors of the FLC/MAF-clade prevent flowering under non-inductive conditions, although the role of some members is not yet clearly defined. Using a genetic strategy, we identified the KH-domain gene HEN4, previously shown to be involved in MADS-box floral homeotic gene regulation, as a modulator of flowering time. Loss-of-function hen4 mutants are early-flowering, and their response to low growth-temperature (16 °C) and day-length is altered. Interestingly, hen4 plants showed dramatic reduction of FLC and MAF4 transcripts, whereas other flowering repressors of the same clade (FLM, MAF2, MAF3, MAF5) remained unaltered. We also determined that hen4, partly due to loss of FLC, accelerates the vegetative phase-change. This report provides insight into flowering time control and highlights the potential of versatile regulators such as HEN4 to coordinate the juvenile-to-adult transition and floral timing.


Arabidopsis Proteins/genetics , Arabidopsis/physiology , MADS Domain Proteins/genetics , RNA-Binding Proteins/genetics , Repressor Proteins/genetics , Up-Regulation , Adaptation, Physiological , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Cold Temperature , Epistasis, Genetic , Flowers/genetics , Flowers/growth & development , Gene Expression Regulation, Plant , Loss of Function Mutation , RNA-Binding Proteins/metabolism
5.
PLoS Genet ; 14(1): e1007182, 2018 01.
Article En | MEDLINE | ID: mdl-29329291

Ovules are fundamental for plant reproduction and crop yield as they are the precursors of seeds. Therefore, ovule specification is a critical developmental program. In Arabidopsis thaliana, ovule identity is redundantly conferred by the homeotic D-class genes SHATTERPROOF1 (SHP1), SHP2 and SEEDSTICK (STK), phylogenetically related to the MADS-domain regulatory gene AGAMOUS (AG), essential in floral organ specification. Previous studies have shown that the HUA-PEP activity, comprised of a suite of RNA-binding protein (RBP) encoding genes, regulates AG pre-mRNA processing and thus flower patterning and organ identity. Here, we report that the HUA-PEP activity additionally governs ovule morphogenesis. Accordingly, in severe hua-pep backgrounds ovules transform into flower organ-like structures. These homeotic transformations are most likely due to the dramatic reduction in SHP1, SHP2 and STK activity. Our molecular and genome-wide profiling strategies revealed the accumulation of prematurely terminated transcripts of D-class genes in hua-pep mutants and reduced amounts of their respective functional messengers, which points to pre-mRNA processing misregulation as the origin of the ovule developmental defects in such backgrounds. RNA processing and transcription are coordinated by the RNA polymerase II (RNAPII) carboxyl-terminal domain (CTD). Our results show that HUA-PEP activity members can interact with the CTD regulator C-TERMINAL DOMAIN PHOSPHATASE-LIKE1 (CPL1), supporting a co-transcriptional mode of action for the HUA-PEP activity. Our findings expand the portfolio of reproductive developmental programs in which HUA-PEP activity participates, and further substantiates the importance of RNA regulatory mechanisms (pre-mRNA co-transcriptional regulation) for correct gene expression during plant morphogenesis.


Arabidopsis , Cell Differentiation/genetics , Ovule/physiology , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional , Arabidopsis/embryology , Arabidopsis/genetics , Flowers/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Morphogenesis/genetics , Ovule/embryology , Plants, Genetically Modified , RNA-Binding Proteins/genetics , Transcription Factors/genetics
...