Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 66
1.
Cell Death Dis ; 15(6): 387, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824145

Obesity exacerbates tissue degeneration and compromises the integrity and reparative potential of mesenchymal stem/stromal cells (MSCs), but the underlying mechanisms have not been sufficiently elucidated. Mitochondria modulate the viability, plasticity, proliferative capacity, and differentiation potential of MSCs. We hypothesized that alterations in the 5-hydroxymethylcytosine (5hmC) profile of mitochondria-related genes may mediate obesity-driven dysfunction of human adipose-derived MSCs. MSCs were harvested from abdominal subcutaneous fat of obese and age/sex-matched non-obese subjects (n = 5 each). The 5hmC profile and expression of nuclear-encoded mitochondrial genes were examined by hydroxymethylated DNA immunoprecipitation sequencing (h MeDIP-seq) and mRNA-seq, respectively. MSC mitochondrial structure (electron microscopy) and function, metabolomics, proliferation, and neurogenic differentiation were evaluated in vitro, before and after epigenetic modulation. hMeDIP-seq identified 99 peaks of hyper-hydroxymethylation and 150 peaks of hypo-hydroxymethylation in nuclear-encoded mitochondrial genes from Obese- versus Non-obese-MSCs. Integrated hMeDIP-seq/mRNA-seq analysis identified a select group of overlapping (altered levels of both 5hmC and mRNA) nuclear-encoded mitochondrial genes involved in ATP production, redox activity, cell proliferation, migration, fatty acid metabolism, and neuronal development. Furthermore, Obese-MSCs exhibited decreased mitochondrial matrix density, membrane potential, and levels of fatty acid metabolites, increased superoxide production, and impaired neuronal differentiation, which improved with epigenetic modulation. Obesity elicits epigenetic changes in mitochondria-related genes in human adipose-derived MSCs, accompanied by structural and functional changes in their mitochondria and impaired fatty acid metabolism and neurogenic differentiation capacity. These observations may assist in developing novel therapies to preserve the potential of MSCs for tissue repair and regeneration in obese individuals.


Adipose Tissue , Cell Differentiation , Epigenesis, Genetic , Mesenchymal Stem Cells , Mitochondria , Obesity , Humans , Mesenchymal Stem Cells/metabolism , Obesity/metabolism , Obesity/genetics , Obesity/pathology , Mitochondria/metabolism , Adipose Tissue/metabolism , Cell Differentiation/genetics , Female , Male , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Adult , Middle Aged , Cell Proliferation
2.
Nat Commun ; 15(1): 1143, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38326364

The major ion chemistry of the ocean has been assumed to be controlled by river input, hydrothermal circulation at mid-ocean ridges, carbonate production, and low-temperature alteration of seafloor basalt, but marine chemical budgets remain difficult to balance. Here we propose that large-scale groundwater flow and diagenetic reactions in continental shelf sediments have been overlooked as an important contributor to major ion budgets in the ocean. Based on data synthesized from 17 passive margin basins, continental shelves contribute fluid exchanges comparable to hydrothermal circulation at mid-ocean ridges. Chemical exchange is similarly significant, indicating removal of Mg2+ from the oceans at rates similar to mid-ocean ridge convection. Continental shelves likely contribute Ca2+ and K+ to the oceans at rates that, in combination with low-temperature basalt alteration, can close current budget deficits. Flow and reaction in continental shelf sediments should be included in a new generation of studies addressing marine isotope budgets.

3.
Aging Dis ; 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38421833

Geographic atrophy (GA) is an advanced form of age-related macular degeneration (AMD), that starts with atrophic lesions in the outer retina that expand to cover the macula and fovea, leading to severe vision loss over time. Pigment Epithelium-Derived Factor (PEDF) has a diverse-range of properties, including its ability to promote cell survival, reduce inflammation, inhibit angiogenesis, combat oxidative stress, regulate autophagy, and stimulate anti-apoptotic pathways, making it a promising therapeutic candidate for GA. However, the relatively short half-life of PEDF protein has precluded its potential as a clinical therapy for GA since it would require frequent injections. Therefore, we describe administration of a PEDF gene, comparing and contrasting delivery routes, viral and non-viral vectors, and consider the critical challenges for PEDF as a neuroprotectant for GA.

4.
bioRxiv ; 2024 Jan 19.
Article En | MEDLINE | ID: mdl-38293184

Loss-of-function mutations in the genes encoding PINK1 and PRKN result in early-onset Parkinson disease (EOPD). Together the encoded enzymes direct a neuroprotective pathway that ensures the elimination of damaged mitochondria via autophagy. We performed a genome-wide high content imaging miRNA screen for inhibitors of the PINK1-PRKN pathway and identified all three members of the miRNA family 29 (miR-29). Using RNAseq we identified target genes and found that siRNA against ATG9A phenocopied the effects of miR-29 and inhibited the initiation of PINK1-PRKN mitophagy. Furthermore, we discovered two rare, potentially deleterious, missense variants (p.R631W and p.S828L) in our EOPD cohort and tested them experimentally in cells. While expression of wild-type ATG9A was able to rescue the effects of miR-29a, the EOPD-associated variants behaved like loss-of-function mutations. Together, our study validates miR-29 and its target gene ATG9A as novel regulators of mitophagy initiation. It further serves as proof-of-concept of finding novel, potentially disease-causing EOPD-linked variants specifically in mitophagy regulating genes. The nomination of genetic variants and biological pathways is important for the stratification and treatment of patients that suffer from devastating diseases, such as EOPD.

5.
Infect Control Hosp Epidemiol ; 45(1): 132-134, 2024 Jan.
Article En | MEDLINE | ID: mdl-37529841

A wall-mounted, far-ultraviolet-C light technology reduced aerosolized bacteriophage MS2 by >3 log10 plaque-forming units within 30 minutes. Vegetative bacterial pathogens on steel disk carriers in the center of the room were reduced by >3 log10 after 45 minutes of exposure, but Candida auris and Clostridioides difficile spores were not.


Clostridioides difficile , Decontamination , Humans , Colony Count, Microbial , Technology , Spores, Bacterial , Ultraviolet Rays , Disinfection
7.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Article En | MEDLINE | ID: mdl-37526516

Cosmic ray muons are massive, charged particles created from high energy cosmic rays colliding with atomic nuclei in Earth's atmosphere. Because of their high momenta and weak interaction, these muons can penetrate through large thicknesses of dense material before being absorbed, making them ideal for nondestructive imaging of objects composed of high-Z elements. A Giant Muon Tracker with two horizontal 8 × 6 in.2 and two vertical 6 × 6 in.2 modules of drift tubes was used to measure muon tracks passing through samples placed inside the detector volume. The experimental results were used to validate a Monte Carlo simulation of the Giant Muon Tracker. The imaging results of simulated samples were reconstructed and compared with those from the experiment, which showed excellent agreement.

8.
Methods Mol Biol ; 2708: 155-174, 2023.
Article En | MEDLINE | ID: mdl-37558970

The injection of therapies into the eye is common practice, both clinically and pre-clinically. The most straightforward delivery route is via an intravitreal injection, which introduces the treatment into the largest cavity at the posterior of the eye. This technique is frequently used to deliver gene therapies, including those containing recombinant adeno-associated viral vectors (AAVs), to the back of the eye to enable inner retinal targeting. This chapter provides detailed methodology on how to successfully perform an intravitreal injection in mice. The chapter covers vector preparation considerations, advice on how to minimize vector loss in the injection device, and ways to reduce vector reflux from the eye when administering a therapy. Finally, a protocol is provided on common retinal histology processing techniques to assess vector-mediated expression in retinal ganglion cells. It is hoped that this chapter will enable researchers to carry out effective and consistent intravitreal injections that transduce the inner retinal surface while avoiding common pitfalls.


Retina , Retinal Ganglion Cells , Mice , Animals , Intravitreal Injections , Transduction, Genetic , Retina/metabolism , Genetic Therapy/methods , Dependovirus/genetics , Genetic Vectors/genetics
9.
Gene Ther ; 30(9): 723-735, 2023 09.
Article En | MEDLINE | ID: mdl-37386155

Adeno-associated virus serotype 2 (AAV2) is a viral vector that can be used to deliver therapeutic genes to diseased cells in the retina. One strategy for altering AAV2 vectors involves the mutation of phosphodegron residues, which are thought to be phosphorylated/ubiquitinated in the cytosol, facilitating degradation of the vector and the inhibition of transduction. As such, mutation of phosphodegron residues have been correlated with increased transduction of target cells, however, an assessment of the immunobiology of wild-type and phosphodegron mutant AAV2 vectors following intravitreal (IVT) delivery to immunocompetent animals is lacking in the current literature. In this study, we show that IVT of a triple phosphodegron mutant AAV2 capsid is associated with higher levels of humoral immune activation, infiltration of CD4 and CD8 T-cells into the retina, generation of splenic germinal centre reactions, activation of conventional dendritic cell subsets, and elevated retinal gliosis compared to wild-type AAV2 capsids. However, we did not detect significant changes in electroretinography arising after vector administration. We also demonstrate that the triple AAV2 mutant capsid is less susceptible to neutralisation by soluble heparan sulphate and anti-AAV2 neutralising antibodies, highlighting a possible utility for the vector in terms of circumventing pre-existing humoral immunity. In summary, the present study highlights novel aspects of rationally-designed vector immunobiology, which may be relevant to their application in preclinical and clinical settings.


Capsid , Parvovirinae , Mice , Animals , Capsid/metabolism , Serogroup , Transduction, Genetic , Capsid Proteins/genetics , Capsid Proteins/metabolism , Parvovirinae/genetics , Dependovirus/metabolism , Genetic Vectors/genetics
10.
PLoS Pathog ; 19(3): e1011281, 2023 03.
Article En | MEDLINE | ID: mdl-37000891

During the blood stage of a malaria infection, malaria parasites export both soluble and membrane proteins into the erythrocytes in which they reside. Exported proteins are trafficked via the parasite endoplasmic reticulum and secretory pathway, before being exported across the parasitophorous vacuole membrane into the erythrocyte. Transport across the parasitophorous vacuole membrane requires protein unfolding, and in the case of membrane proteins, extraction from the parasite plasma membrane. We show that trafficking of the exported Plasmodium protein, Pf332, differs from that of canonical eukaryotic soluble-secreted and transmembrane proteins. Pf332 is initially ER-targeted by an internal hydrophobic sequence that unlike a signal peptide, is not proteolytically removed, and unlike a transmembrane segment, does not span the ER membrane. Rather, both termini of the hydrophobic sequence enter the ER lumen and the ER-lumenal species is a productive intermediate for protein export. Furthermore, we show in intact cells, that two other exported membrane proteins, SBP1 and MAHRP2, assume a lumenal topology within the parasite secretory pathway. Although the addition of a C-terminal ER-retention sequence, recognised by the lumenal domain of the KDEL receptor, does not completely block export of SBP1 and MAHRP2, it does enhance their retention in the parasite ER. This indicates that a sub-population of each protein adopts an ER-lumenal state that is an intermediate in the export process. Overall, this suggests that although many exported proteins traverse the parasite secretory pathway as typical soluble or membrane proteins, some exported proteins that are ER-targeted by a transmembrane segment-like, internal, non-cleaved hydrophobic segment, do not integrate into the ER membrane, and form an ER-lumenal species that is a productive export intermediate. This represents a novel means, not seen in typical membrane proteins found in model systems, by which exported transmembrane-like proteins can be targeted and trafficked within the lumen of the secretory pathway.


Malaria , Plasmodium , Humans , Protein Transport , Protozoan Proteins/metabolism , Plasmodium/metabolism , Endoplasmic Reticulum/metabolism , Erythrocytes/parasitology , Malaria/metabolism , Membrane Proteins/metabolism , Plasmodium falciparum/metabolism
11.
Gene Ther ; 30(6): 503-519, 2023 06.
Article En | MEDLINE | ID: mdl-36635457

Recombinant adeno-associated viral vectors (AAVs) are an effective system for gene transfer. AAV serotype 2 (AAV2) is commonly used to deliver transgenes to retinal ganglion cells (RGCs) via intravitreal injection. The AAV serotype however is not the only factor contributing to the effectiveness of gene therapies. Promoters influence the strength and cell-selectivity of transgene expression. This study compares five promoters designed to maximise AAV2 cargo space for gene delivery: chicken ß-actin (CBA), cytomegalovirus (CMV), short CMV early enhancer/chicken ß-actin/short ß-globulin intron (sCAG), mouse phosphoglycerate kinase (PGK), and human synapsin (SYN). The promoters driving enhanced green fluorescent protein (eGFP) were examined in adult C57BL/6J mice eyes and tissues of the visual system. eGFP expression was strongest in the retina, optic nerves and brain when driven by the sCAG and SYN promoters. CBA, CMV, and PGK had moderate expression by comparison. The SYN promoter had almost exclusive transgene expression in RGCs. The PGK promoter had predominant expression in both RGCs and AII amacrine cells. The ubiquitous CBA, CMV, and sCAG promoters expressed eGFP in a variety of cell types across multiple retinal layers including Müller glia and astrocytes. We also found that these promoters could transduce human retina ex vivo, although expression was predominantly in glial cells due to low RGC viability. Taken together, this promoter comparison study contributes to optimising AAV-mediated transduction in the retina, and could be valuable for research in ocular disorders, particularly those with large or complex genetic cargos.


Cytomegalovirus Infections , Parvovirinae , Mice , Animals , Humans , Retinal Ganglion Cells/metabolism , Actins/genetics , Actins/metabolism , Transduction, Genetic , Mice, Inbred C57BL , Transgenes , Dependovirus/genetics , Dependovirus/metabolism , Parvovirinae/genetics , Green Fluorescent Proteins/genetics , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/metabolism , Genetic Vectors/genetics
12.
Infect Control Hosp Epidemiol ; 44(8): 1361-1364, 2023 08.
Article En | MEDLINE | ID: mdl-36177872

Contaminated shoes are a potential vector for dissemination of healthcare-associated pathogens. We demonstrated that healthcare personnel walking into patient rooms frequently transferred pathogens from their shoes to the floor. An 8-second treatment of shoes with a UV-C decontamination device significantly reduced the frequency of transfer of vegetative bacterial pathogens.


Patients' Rooms , Ultraviolet Rays , Humans , Colony Count, Microbial , Bacteria , Decontamination
13.
BMJ Open ; 12(12): e059358, 2022 12 01.
Article En | MEDLINE | ID: mdl-36456009

OBJECTIVES: The aim of this study was to investigate the relationship of echocardiographic parameters, laboratory findings and clinical characteristics with in-hospital mortality in adult patients with COVID-19 admitted to the intensive care units (ICU) in two large collaborating tertiary UK centres. DESIGN: Observational retrospective study. SETTING: The study was conducted in patients admitted to the ICU in two large tertiary centres in London, UK. PARTICIPANTS: Inclusion criteria were: (1) patients admitted to the ICU with a COVID-19 diagnosis over a period of 16 weeks. and (2) underwent a transthoracic echocardiogram on the first day of ICU admission as clinically indicated.No exclusion criteria applied.Three hundred patients were enrolled and completed the follow-up. PRIMARY AND SECONDARY OUTCOME MEASURES: The outcome measure in this study was in-hospital mortality in patients admitted to the ICU with COVID-19 infection. RESULTS: Older age (HR: 1.027, 95% CI 1.007 to 1.047; p=0.008), left ventricular (LV) ejection fraction<35% (HR: 5.908, 95% CI 2.609 to 13.376; p<0.001), and peak C reactive protein (CRP) (HR: 1.002, 95% CI 1.001 to 1.004, p=0.001) were independently correlated with mortality in a multivariable Cox regression model. Following multiple imputation of variables with more than 5% missing values, random forest analysis was applied to the imputed data. Right ventricular (RV) basal diameter (RVD1), RV mid-cavity diameter (RVD2), tricuspid annular plane systolic excursion, RV systolic pressure, hypertension, RV dysfunction, troponin level on admission, peak CRP, creatinine level on ICU admission, body mass index and age were found to have a high relative importance (> 0.7). CONCLUSIONS: In patients with COVID-19 in the ICU, both severely impaired LV function and impaired RV function may have adverse prognostic implications, but older age and inflammatory markers appear to have a greater impact. A combination of echocardiographic and laboratory investigations as well as demographic and clinical characteristics appears appropriate for risk stratification in patients with COVID-19 who are admitted to the ICU.


COVID-19 , Critical Illness , Adult , Humans , Hospital Mortality , Retrospective Studies , COVID-19 Testing , C-Reactive Protein
14.
Pathog Immun ; 7(2): 66-77, 2022.
Article En | MEDLINE | ID: mdl-36381131

Reprinted with permission, Cleveland Clinic Foundation ©2022. All Rights Reserved. Background: Barriers are commonly installed in workplace situations where physical distancing cannot be maintained to reduce the risk for transmission of respiratory viruses. Although some types of barriers have been shown to reduce exposure to aerosols in laboratory-based testing, limited information is available on the efficacy of barriers in real-world settings. Methods: In an acute care hospital, we tested the effectiveness of in-use plexiglass barriers in reducing exposure of staff to aerosolized particles. A nebulizer was used to release 5% NaCl aerosol 1 meter from staff members with and without the barrier positioned between the point of aerosol release and the hospital staff. Particle counts on the staff side of the barrier were measured using a 6-channel particle counter. A condensed moisture (fog) generating device was used to visualize the airflow patterns. Results: Of 13 in-use barriers tested, 6 (46%) significantly reduced aerosol particle counts detected behind the barrier, 6 (46%) reduced particle counts to a modest, non-significant degree, and 1 (8%) significantly increased particle counts behind the barrier. Condensed moisture fog accumulated in the area where staff were seated behind the barrier that increased particle exposure, but not behind the other barriers. After repositioning the ineffective barrier, the condensed moisture fog no longer accumulated behind the barrier and aerosol exposure was reduced. Conclusion: In real-world settings, plexiglass barriers vary widely in effectiveness in reducing staff exposure to aerosols, and some barriers may increase risk for exposure if not positioned correctly. Devices that visualize airflow patterns may be useful as simple tools to assess barriers.

15.
Cell Transplant ; 31: 9636897221105499, 2022.
Article En | MEDLINE | ID: mdl-35770772

Cell transplantation is an attractive treatment strategy for a variety of brain disorders, as it promises to replenish lost functions and rejuvenate the brain. In particular, transplantation of astrocytes has come into light recently as a therapy for amyotrophic lateral sclerosis (ALS); moreover, grafting of astrocytes also showed positive results in models of other conditions ranging from neurodegenerative diseases of older age to traumatic injury and stroke. Despite clear differences in etiology, disorders such as ALS, Parkinson's, Alzheimer's, and Huntington's diseases, as well as traumatic injury and stroke, converge on a number of underlying astrocytic abnormalities, which include inflammatory changes, mitochondrial damage, calcium signaling disturbance, hemichannel opening, and loss of glutamate transporters. In this review, we examine these convergent pathways leading to astrocyte dysfunction, and explore the existing evidence for a therapeutic potential of transplantation of healthy astrocytes in various models. Existing literature presents a wide variety of methods to generate astrocytes, or relevant precursor cells, for subsequent transplantation, while described outcomes of this type of treatment also differ between studies. We take technical differences between methodologies into account to understand the variability of therapeutic benefits, or lack thereof, at a deeper level. We conclude by discussing some key requirements of an astrocyte graft that would be most suitable for clinical applications.


Amyotrophic Lateral Sclerosis , Huntington Disease , Neurodegenerative Diseases , Stroke , Astrocytes/metabolism , Humans , Neurodegenerative Diseases/metabolism , Stroke/metabolism
16.
Elife ; 102021 12 06.
Article En | MEDLINE | ID: mdl-34870595

Axon loss underlies symptom onset and progression in many neurodegenerative disorders. Axon degeneration in injury and disease is promoted by activation of the NAD-consuming enzyme SARM1. Here, we report a novel activator of SARM1, a metabolite of the pesticide and neurotoxin vacor. Removal of SARM1 completely rescues mouse neurons from vacor-induced neuron and axon death in vitro and in vivo. We present the crystal structure of the Drosophila SARM1 regulatory domain complexed with this activator, the vacor metabolite VMN, which as the most potent activator yet known is likely to support drug development for human SARM1 and NMNAT2 disorders. This study indicates the mechanism of neurotoxicity and pesticide action by vacor, raises important questions about other pyridines in wider use today, provides important new tools for drug discovery, and demonstrates that removing SARM1 can robustly block programmed axon death induced by toxicity as well as genetic mutation.


Armadillo Domain Proteins/genetics , Axons/pathology , Cytoskeletal Proteins/genetics , Nerve Degeneration/physiopathology , Neurotoxins/pharmacology , Phenylurea Compounds/pharmacology , Animals , Armadillo Domain Proteins/metabolism , Axons/drug effects , Cytoskeletal Proteins/metabolism , Female , Male , Mice , Nerve Degeneration/chemically induced , Rodenticides/pharmacology
17.
Exp Eye Res ; 213: 108793, 2021 12.
Article En | MEDLINE | ID: mdl-34656549

Membrane contact sites (MCS) play crucial roles in cell physiology with dysfunction in several MCS proteins being linked with neurological and optic nerve diseases. Although there have been significant advances in imaging these interactions over the past two decades with advanced electron microscopy techniques, super-resolution imaging and proximity-dependent fluorescent reporters, a technique to observe and quantify MCS in mammalian optic nerve tissues has not yet been reported. We demonstrate for the first time that proximity ligation assay (PLA), a technique already used in mammalian cell lines, can be used as an efficient method of quantifying inter-organelle contact sites, namely mitochondria-endoplasmic reticulum (ER) and mitochondria-late-endosomes, in mammalian optic nerve tissues treated with adeno-associated virus (AAV) gene therapy with wild-type or phosphomimetic (active) protrudin. PLA utilises complementary single-stranded DNA oligomers bound to secondary antibodies that hybridise and complete a circular piece of DNA when the primary antibodies of interest interact. These interactions can be detected by amplifying the circular DNA and adding fluorescent probes. We show that PLA is a useful method that can be used to quantify MCS in optic nerve tissues. We have found that upregulation of protrudin with gene therapy significantly increases the number of mitochondria-ER and mitochondria-Rab7-late endosomes contact sites in optic nerves.


Biological Assay/methods , Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Mitochondrial Membranes/metabolism , Optic Nerve/metabolism , Animals , Binding Sites , Dependovirus/genetics , Female , Gene Expression , Genetic Therapy , Genetic Vectors , Green Fluorescent Proteins/genetics , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Organelles , Tissue Fixation , Vesicular Transport Proteins/genetics
18.
Sci Adv ; 7(14)2021 03.
Article En | MEDLINE | ID: mdl-33789891

Gene replacement approaches are leading to a revolution in the treatment of previously debilitating monogenic neurological conditions. However, the application of gene therapy to complex polygenic conditions has been limited. Down-regulation or dysfunction of receptor expression in the disease state or in the presence of excess ligand has been shown to compromise therapeutic efficacy. Here, we offer evidence that combined overexpression of both brain-derived neurotrophic factor and its receptor, tropomyosin receptor kinase B, is more effective in stimulating axonal transport than either receptor administration or ligand administration alone. We also show efficacy in experimental glaucoma and humanized tauopathy models. Simultaneous administration of a ligand and its receptor by a single gene therapy vector overcomes several problems relating to ligand deficiency and receptor down-regulation that may be relevant to multiple neurodegenerative diseases. This approach shows promise as a strategy to target intrinsic mechanisms to improve neuronal function and facilitate repair.


Axonal Transport , Neurons , Dietary Supplements , Genetic Therapy , Ligands , Neurons/metabolism
19.
Biol Rev Camb Philos Soc ; 96(4): 1616-1644, 2021 08.
Article En | MEDLINE | ID: mdl-33837614

Viral vectors can be utilised to deliver therapeutic genes to diseased cells. Adeno-associated virus (AAV) is a commonly used viral vector that is favoured for its ability to infect a wide range of tissues whilst displaying limited toxicity and immunogenicity. Most humans harbour anti-AAV neutralising antibodies (NAbs) due to subclinical infections by wild-type virus during infancy and these pre-existing NAbs can limit the efficiency of gene transfer depending on the target cell type, route of administration and choice of serotype. Vector administration can also result in de novo NAb synthesis that could limit the opportunity for repeated gene transfer to diseased sites. A number of strategies have been described in preclinical models that could circumvent NAb responses in humans, however, the successful translation of these innovations into the clinical arena has been limited. Here, we provide a comprehensive review of the humoral immune response to AAV gene therapy in the ocular compartment. We cover basic AAV biology and clinical application, the role of pre-existing and induced NAbs, and possible approaches to overcoming antibody responses. We conclude with a framework for a comprehensive strategy for circumventing humoral immune responses to AAV in the future.


Dependovirus , Immunity, Humoral , Dependovirus/genetics , Genetic Therapy , Genetic Vectors , Humans
20.
Sensors (Basel) ; 21(6)2021 Mar 21.
Article En | MEDLINE | ID: mdl-33801076

Radiation detectors installed at major ports of entry are a key component of the overall strategy to protect countries from nuclear terrorism. While the goal of deploying these systems is to intercept special nuclear material as it enters the country, no detector system is foolproof. Mobile, distributed sensors have been proposed to detect nuclear materials in transit should portal monitors fail to prevent their entry in the first place. In large metropolitan areas, a mobile distributed sensor network could be deployed using vehicle platforms such as taxis, Ubers, and Lyfts, which are already connected to communications infrastructure. However, performance and coverage that could be achieved using a network of sensors mounted on commercial passenger vehicles has not been established. Here, we evaluate how a mobile sensor network could perform in New York City using a combination of radiation transport and geographic information systems. The geographic information system is used in conjunction with OpenStreetMap data to isolate roads and construct a grid over the streets. Vehicle paths are built using pickup and drop off data from Uber, and from the New York State Department of Transportation. The results show that the time to first detection increases with source velocity, decreases with the number of mobile detectors, and reaches a plateau that depends on the strength of the source.

...