Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Regul Toxicol Pharmacol ; : 105701, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39251126

RESUMEN

Advances in biosciences, chemistry, technology, and computer sciences have resulted in the unparalleled development of candidate New Approach Methodologies over the last few years. Many of these are potentially invaluable in the safety assessment of chemicals, but very few have been adopted for regulatory decision making. There is an immediate opportunity to use NAMs in safety assessment where the vision is to be able to predict risk more rapidly, accurately, and efficiently to further assure consumer safety. In order to achieve this, the UK Food Standards Agency (FSA) and the Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (COT) have developed a roadmap towards acceptance and integration of these new approach methodologies into safety and risk assessments for regulatory decision making. The roadmap provides a UK blueprint for the transition of NAMs from the research laboratory to their use in regulatory decision making. This will require close collaboration across disciplines (chemists, toxicologists, informaticians, risk assessors and others), and across chemical sectors, to develop, verify and utilise appropriate models. Linking up internationally, and harmonization will be fundamental.

3.
Toxicol Res (Camb) ; 13(2): tfae016, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38450177

RESUMEN

The further optimization of consumer safety through risk assessment of chemicals present in food will require adaptability and flexibility to utilize the accelerating developments in safety science and technology. New Approach Methodologies (NAMs) are gaining traction as a systematic approach to support informed decision making in chemical risk assessment. The vision is to be able to predict risk more accurately, rapidly and efficiently. The opportunity exists now to use these approaches which requires a strategy to translate the science into future regulatory implementation. Here we discuss new insights obtained from three recent workshops on how to translate the science into future regulatory implementation. To assist the UK in this endeavor, the Food Standards Agency (FSA) and the scientific advisory committee on chemical toxicity (COT) have been developing a roadmap. In addition, we discuss how these new insights fit into the bigger picture of the new chemical landscape for better consumer safety and the importance of international harmonization.

4.
Toxics ; 11(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37505541

RESUMEN

Dimensionality reduction techniques are crucial for enabling deep learning driven quantitative structure-activity relationship (QSAR) models to navigate higher dimensional toxicological spaces, however the use of specific techniques is often arbitrary and poorly explored. Six dimensionality techniques (both linear and non-linear) were hence applied to a higher dimensionality mutagenicity dataset and compared in their ability to power a simple deep learning driven QSAR model, following grid searches for optimal hyperparameter values. It was found that comparatively simpler linear techniques, such as principal component analysis (PCA), were sufficient for enabling optimal QSAR model performances, which indicated that the original dataset was at least approximately linearly separable (in accordance with Cover's theorem). However certain non-linear techniques such as kernel PCA and autoencoders performed at closely comparable levels, while (especially in the case of autoencoders) being more widely applicable to potentially non-linearly separable datasets. Analysis of the chemical space, in terms of XLogP and molecular weight, uncovered that the vast majority of testing data occurred within the defined applicability domain, as well as that certain regions were measurably more problematic and antagonised performances. It was however indicated that certain dimensionality reduction techniques were able to facilitate uniquely beneficial navigations of the chemical space.

5.
ACS Nano ; 11(2): 1869-1883, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28177603

RESUMEN

We have recently shown that the toxicological potential of GaAs and InAs particulates in cells is size- and dissolution-dependent, tending to be more pronounced for nano- vs micron-sized particles. Whether the size-dependent dissolution and shedding of ionic III-V materials also apply to pulmonary exposure is unclear. While it has been demonstrated that micron-sized III-V particles, such as GaAs and InAs, are capable of inducing hazardous pulmonary effects in an occupational setting as well as in animal studies, the effect of submicron particles (e.g., the removal of asperities during processing of semiconductor wafers) is unclear. We used cytokine profiling to compare the pro-inflammatory effects of micron- and nanoscale GaAs and InAs particulates in cells as well as the murine lung 40 h and 21 days after oropharyngeal aspiration. Use of cytokine array technology in macrophage and epithelial cell cultures demonstrated a proportionally higher increase in the levels of matrix metalloproteinase inducer (EMMPRIN), macrophage migration inhibitory factor (MIF), and interleukin 1ß (IL-1ß) by nanosized (n) GaAs and n-InAs as well as As(III). n-GaAs and n-InAs also triggered higher neutrophil counts in the bronchoalveolar lavage fluid (BALF) of mice than micronscale particles 40 h post-aspiration, along with increased production of EMMPRIN and MIF. In contrast, in animals sacrificed 21 days after exposure, only n-InAs induced fibrotic lung changes as determined by increased lung collagen as well as increased levels of TGF-ß1 and PDGF-AA in the BALF. A similar trend was seen for EMMPRIN and matrix metallopeptidase (MMP-9) levels in the BALF. Nano- and micron-GaAs had negligible subacute effects. Importantly, the difference between the 40 h and 21 days data appears to be biopersistence of n-InAs, as demonstrated by ICP-OES analysis of lung tissue. Interestingly, an ionic form of In, InCl3, also showed pro-fibrogenic effects due to the formation of insoluble In(OH)3 nanostructures. All considered, these data indicate that while nanoscale particles exhibit increased pro-inflammatory effects in the lung, most effects are transient, except for n-InAs and insoluble InCl3 species that are biopersistent and trigger pro-fibrotic effects. These results are of potential importance for the understanding the occupational health effects of III-V particulates.


Asunto(s)
Arsenicales/química , Fibrinógeno/metabolismo , Indio/química , Inflamación/metabolismo , Pulmón/metabolismo , Animales , Línea Celular , Humanos , Indio/toxicidad , Iones/química , Iones/toxicidad , Pulmón/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Tamaño de la Partícula , Semiconductores , Propiedades de Superficie , Células THP-1
6.
Small ; 12(32): 4404-11, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27383397

RESUMEN

Recent studies suggest that the nanorods consisting of europium hydroxide could promote angiogenesis. In this study, it is sought to determine if additional types of nanoparticles are capable of enhancing angiogenesis and in addition, understand the underlying mechanisms. For this reason, a method is employed that combines a high throughput in vitro cell based screen coupled with an in vivo validation using vascular specific green fluorescent protein reporter transgenic zebrafish for examining proangiogenesis activity. After screening multiple types of nanoparticles, it is discovered that four of them, Eu(III) (OH)3 rods (Eu rods), Eu(III) (OH)3 spheres (Eu spheres), Tb(III) (OH)3 rods (Tb rods), and Tb(III) (OH)3 spheres (Tb spheres), are the most effective in promoting angiogenesis. It is also showed that ionic forms of europium nitrate [Eu(NO3 )3 ] (Eu) and terbium nitrate [Tb(NO3 )3 ] (Tb), the two lanthanide elements for these four nanoparticles, are also capable of enhancing angiogenesis. However, this effect is further enhanced by nanoparticle synthesis. Finally, it is demonstrated that reactive oxygen species H2 O2 is a key factor in the process of proangiogenesis by lanthanide elemental nanoparticles.


Asunto(s)
Elementos de la Serie de los Lantanoides/química , Elementos de la Serie de los Lantanoides/farmacología , Nanopartículas/química , Neovascularización Fisiológica/efectos de los fármacos , Animales , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra
7.
Nanotoxicology ; 10(9): 1276-86, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27350075

RESUMEN

Some nanoparticles (NPs) may induce adverse health effects in exposed organisms, but to date the evidence for this in wildlife is very limited. Silver nanoparticles (AgNPs) can be toxic to aquatic organisms, including fish, at concentrations relevant for some environmental exposures. We applied whole mount in-situ hybridisation (WISH) in zebrafish embryos and larvae for a suite of genes involved with detoxifying processes and oxidative stress, including metallothionein (mt2), glutathionine S-transferase pi (gstp), glutathionine S-transferase mu (gstm1), haem oxygenase (hmox1) and ferritin heavy chain 1 (fth1) to identify potential target tissues and effect mechanisms of AgNPs compared with a bulk counterpart and ionic silver (AgNO3). AgNPs caused upregulation in the expression of mt2, gstp and gstm1 and down regulation of expression of both hmox1 and fth1 and there were both life stage and tissue-specific responses. Responding tissues included olfactory bulbs, lateral line neuromasts and ionocytes in the skin with the potential for effects on olfaction, behaviour and maintenance of ion balance. Silver ions induced similar gene responses and affected the same target tissues as AgNPs. AgNPs invoked levels of target gene responses more similar to silver treatments compared to coated AgNPs indicating the responses seen were due to released silver ions. In the Nrf2 zebrafish mutant, expression of mt2 (24 hpf) and gstp (3 dpf) were either non-detectable or were at lower levels compared with wild type zebrafish for exposures to AgNPs, indicating that these gene responses are controlled through the Nrf2-Keap pathway.


Asunto(s)
Nanopartículas del Metal , Factor 2 Relacionado con NF-E2 , Bulbo Olfatorio , Plata , Piel , Contaminantes Químicos del Agua , Proteínas de Pez Cebra , Pez Cebra , Animales , Conducta Animal/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Expresión Génica/efectos de los fármacos , Hibridación in Situ , Larva , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Factor 2 Relacionado con NF-E2/genética , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Plata/química , Plata/toxicidad , Piel/citología , Piel/efectos de los fármacos , Propiedades de Superficie , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
8.
ACS Nano ; 9(10): 9573-84, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26327297

RESUMEN

We studied adult zebrafish to determine whether the size of 20 and 110 nm citrate-coated silver nanoparticles (AgC NPs) differentially impact the gills and intestines, known target organs for Ag toxicity in fish. Following exposure for 4 h, 4 days, or 4 days plus a 7 day depuration period, we obtained different toxicokinetic profiles for different particle sizes, as determined by Ag content of the tissues. Ionic AgNO3 served as a positive control. The gills showed a significantly higher Ag content for the 20 nm particles at 4 h and 4 days than the 110 nm particles, while the values were more similar in the intestines. Both particle types were retained in the intestines even after depuration. These toxicokinetics were accompanied by striking size-dependent differences in the ultrastructural features and histopathology in the target organs in response to the particulates. Ag staining of the gills and intestines confirmed prominent Ag deposition in the basolateral membranes for the 20 nm but not for the 110 nm particles. Furthermore, it was possible to link the site of tissue deposition to disruption of the Na(+)/K(+) ion channel, which is also localized to the basolateral membrane. This was confirmed by a reduction in ATPase activity and immunohistochemical detection of the α subunit of this channel in both target organs, with the 20 nm particles causing significantly higher inhibition and disruption than the larger size particles or AgNO3. These results demonstrate the importance of particle size in determining the hazardous impact of AgNPs in the gills and intestines of adult zebrafish.


Asunto(s)
Antiinfecciosos/toxicidad , Branquias/efectos de los fármacos , Intestinos/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/fisiología , Animales , Femenino , Branquias/patología , Branquias/fisiología , Intestinos/patología , Intestinos/fisiología , Masculino , Nanopartículas del Metal/ultraestructura , Tamaño de la Partícula , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
9.
Nanotoxicology ; 7(8): 1315-24, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23035978

RESUMEN

Manufactured metal (oxide) nanoparticles are entering the aquatic environment with little understanding on their potential health impacts for exposed organisms. Adopting an integrative approach, we investigated effects of particle size and coating on biological responses for two of the most commonly used metal (oxide) nanoscale particles, silver (Ag) and titanium dioxide (TiO2) in zebrafish embryos. Titanium dioxide nanoparticles (nominally, 4 nm, 10 nm, 30 nm and 134 nm) had little or no toxicity on the endpoints measured. Ag both in nano form (10 nm and 35 nm) and its larger counterpart (600-1600 nm) induced dose-dependent lethality and morphological defects, occurring predominantly during gastrula stage. Of the silver material tested 10 nm nanoparticles appeared to be the most toxic. Coating Ag nanoparticles with citrate or fulvic acid decreased toxicity significantly. In situ hybridisation analysis identified the yolk syncytial layer (YSL) as a target tissue for Ag-nano toxicity where there was a significant induction of the heavy metal stress response gene, metallothionein 2 (Mt2) at sub-lethal exposures. Coherent Anti-stroke Raman Scattering (CARS) microscopy provided no evidence for silver particles crossing the chorionic membrane in exposed embryos. Collectively, our data suggest that silver ions play a major role in the toxicity of Ag nanoparticles.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Titanio/toxicidad , Análisis de Varianza , Animales , Embrión no Mamífero/patología , Metalotioneína , Necrosis , Tamaño de la Partícula , Plata/química , Plata/farmacocinética , Análisis de Supervivencia , Titanio/química , Titanio/farmacocinética , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA