Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Limnol Oceanogr Lett ; 8(1): 162-172, 2023 Feb.
Article En | MEDLINE | ID: mdl-36777312

Freshwater ecosystems are experiencing increased salinization. Adaptive management of harmful algal blooms (HABs) contribute to eutrophication/salinization interactions through the hydrologic transport of blooms to coastal environments. We examined how nutrients and salinity interact to affect growth, elemental composition, and cyanotoxin production/release in two common HAB genera. Microcystis aeruginosa (non-nitrogen (N)-fixer and microcystin-LR producer; MC-LR) and Aphanizomenon flos-aquae (N-fixer and cylindrospermopsin producer; CYN) were grown in N:phosphorus (N:P) 4 and 50 (by atom) for 21 and 33 days, respectively, then dosed with a salinity gradient (0 - 10.5 g L-1). Both total MC-LR and CYN were correlated with particulate N. We found Microcystis MC-LR production and release was affected by salinity only in the N:P 50 treatment. However, Aphanizomenon CYN production and release was affected by salinity regardless of N availability. Our results highlight how cyanotoxin production and release across the freshwater - marine continuum are controlled by eco-physiological differences between N-acquisition traits.

2.
Limnol Oceanogr ; 68(2): 348-360, 2023 Feb.
Article En | MEDLINE | ID: mdl-36819961

Harmful cyanobacterial blooms are an increasing threat to water quality. The interactions between two eco-physiological functional traits of cyanobacteria, diazotrophy (nitrogen (N)-fixation) and N-rich cyanotoxin synthesis, have never been examined in a stoichiometric explicit manner. We explored how a gradient of resource N:phosphorus (P) affects the biomass, N, P stoichiometry, light-harvesting pigments, and cylindrospermopsin production in a N-fixing cyanobacterium, Aphanizomenon. Low N:P Aphanizomenon cultures produced the same biomass as populations grown in high N:P cultures. The biomass accumulation determined by carbon, indicated low N:P Aphanizomenon cultures did not have a N-fixation growth tradeoff, in contrast to some other diazotrophs that maintain stoichiometric N homeostasis at the expense of growth. However, N-fixing Aphanizomenon populations produced less particulate cylindrospermopsin and had undetectable dissolved cylindrospermopsin compared to non-N-fixing populations. The pattern of low to high cyanotoxin cell quotas across an N:P gradient in the diazotrophic cylindrospermopsin producer is similar to the cyanotoxin cell quota response in non-diazotrophic cyanobacteria. We suggest that diazotrophic cyanobacteria may be characterized into two broad functional groups, the N-storage-strategists and the growth-strategists, which use N-fixation differently and may determine patterns of bloom magnitude and toxin production in nature.

3.
Harmful Algae ; 103: 102011, 2021 03.
Article En | MEDLINE | ID: mdl-33980450

The role of nitrogen (N) fixation in determining the frequency, magnitude, and extent of harmful algal blooms (HABs) has not been well studied. Dolichospermum is a common HAB species that is diazotrophic (capable of N fixation) and thus growth is often considered never to be limited by low combined N sources. However, N fixation is energetically expensive and its cost during bloom formation has not been quantified. Additionally, it is unknown how acclimation to differing nutrient ratios affects growth and cellular carbon (C):N stoichiometry. Here, we test the hypotheses that diazotrophic cyanobacteria are homeostatic for N because of their ability to fix atmospheric N2 and that previous acclimation to low N environments will result in more fixed N and lower C:N stoichiometry. Briefly, cultures that varied in resource N:phosphorus (P) ranging from 0.01 to 100 (atom), were seeded with Dolichospermum which were previously acclimated to low and high N:P conditions and then sampled temporally for growth and C:N stoichiometry. We found that Dolichospermum was not homeostatic for N and displayed classic signs of N limitation and elevated C:N stoichiometry, highlighting the necessary growth trade-off within cells when expending energy to fix N. Acclimation to N limited conditions caused differences in both C:N and fixed N at various time points in the experiment. These results highlight the importance of environmentally available N to a diazotrophic bloom, as well as how previous growth conditions can influence population growth during blooms experiencing variable N:P.


Cyanobacteria , Nitrogen , Carbon , Harmful Algal Bloom , Phosphorus
4.
Toxins (Basel) ; 11(10)2019 10 16.
Article En | MEDLINE | ID: mdl-31623095

Harmful algal blooms (HABs) are increasing in magnitude, frequency, and duration globally. Even though a limited number of phytoplankton species can be toxic, they are becoming one of the greatest water quality threats to public health and ecosystems due to their intrinsic toxicity to humans and the numerous interacting factors that undermine HAB forecasting. Here, we show that the carbon:nitrogen:phosphorus (C:N:P) stoichiometry of a common toxic phytoplankton species, Microcystis, regulates toxin quotas during blooms through a tradeoff between primary and secondary metabolism. Populations with optimal C:N (< 8) and C:P (< 200) cellular stoichiometry consistently produced more toxins than populations exhibiting stoichiometric plasticity. Phosphorus availability in water exerted a strong control on population biomass and C:P stoichiometry, but N availability exerted a stronger control on toxin quotas by regulating population biomass and C:N:P stoichiometry. Microcystin-LR, like many phytoplankton toxins, is an N-rich secondary metabolite with a C:N stoichiometry that is similar to the optimal growth stoichiometry of Microcystis. Thus, N availability relative to P and light provides a dual regulatory mechanism that controls both biomass production and cellular toxin synthesis. Overall, our results provide a quantitative framework for improving forecasting of toxin production during HABs and compelling support for water quality management that limit both N and P inputs from anthropogenic sources.


Carbon/metabolism , Microcystins/metabolism , Microcystis/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Harmful Algal Bloom , Marine Toxins , Microcystis/growth & development , Secondary Metabolism
...