Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Sci Rep ; 14(1): 2749, 2024 02 02.
Article En | MEDLINE | ID: mdl-38302510

The emergence and dissemination of carbapenem-resistant species of Acinetobacter and Pseudomonas have become a serious health concern. Routine antimicrobial disk susceptibility tests in clinical laboratories cannot distinguish between isolates that are highly carbapenem-resistant and those that are moderately carbapenem-resistant. The present study describes antimicrobial susceptibility tests using disks containing high doses (1000 µg) of meropenem. The diameters of inhibition zones were significantly negatively correlated with the MICs of Pseudomonas and Acinetobacter species for meropenem (R2: 0.93 and 0.91, respectively) and imipenem (R2: 0.75 and 0.84, respectively). Double disk synergy tests using clavulanic acid or sodium mercaptoacetate can detect ESBL or MBL producers. Susceptibility tests using disks containing high doses of meropenem can easily detect highly carbapenem-resistant isolates in a quantitative manner. These disks may be useful in bacteriological laboratories because of their technical ease, stability, and relatively low cost.


Acinetobacter , Anti-Infective Agents , Meropenem/pharmacology , Pseudomonas , Thienamycins/pharmacology , Carbapenems/pharmacology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , beta-Lactamases
2.
Heliyon ; 9(10): e20913, 2023 Oct.
Article En | MEDLINE | ID: mdl-37876437

An immunochromatographic kit using antibodies against recombinant N protein of an omicron B.1.1.529 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was developed to detect SARS-CoV-2 omicron variants. The kit detected omicron variants (BA.1.18, BA.1.1, BA.2, BA.2.12.1, BA.2.75, BA.4.1, BA.4.6, BE.1, BA.5.2.1, XE, BF.7, BF.7.4.1, XBB.1, XBB.1.5 and BQ.1.1) as well as Wuhan strain and a delta variant.

3.
J Med Microbiol ; 72(9)2023 Sep.
Article En | MEDLINE | ID: mdl-37706679

Background. The spread of Enterobacteriaceae coproducing carbapenemases, 16S rRNA methylase and mobile colistin resistance proteins (MCRs) has become a serious public health problem worldwide. This study describes two clinical isolates of Klebsiella pneumoniae coharbouring bla IMP-1, armA and mcr-10.Methods. Two clinical isolates of K. pneumoniae resistant to carbapenems and aminoglycosides were obtained from two patients at a hospital in Myanmar. Their minimum inhibitory concentrations (MICs) were determined by broth microdilution methods. The whole-genome sequences were determined by MiSeq and MinION methods. Drug-resistant factors and their genomic environments were determined.Results. The two K. pneumoniae isolates showed MICs of ≥4 and ≥1024 µg ml-1 for carbapenems and aminoglycosides, respectively. Two K. pneumonaie harbouring mcr-10 were susceptible to colistin, with MICs of ≤0.015 µg ml-1 using cation-adjusted Mueller-Hinton broth, but those for colistin were significantly higher (0.5 and 4 µg ml-1) using brain heart infusion medium. Whole-genome analysis revealed that these isolates coharboured bla NDM-1, armA and mcr-10. These two isolates showed low MICs of 0.25 µg ml-1 for colistin. Genome analysis revealed that both bla NDM-1 and armA were located on IncFIIs plasmids of similar size (81 kb). The mcr-10 was located on IncM2 plasmids of sizes 220 or 313 kb in each isolate. These two isolates did not possess a qseBC gene encoding a two-component system, which is thought to regulate the expression of mcr genes.Conclusion. This is the first report of isolates of K. pneumoniae coharbouring bla NDM-1, armA and mcr-10 obtained in Myanmar.


Colistin , Klebsiella pneumoniae , Humans , Klebsiella pneumoniae/genetics , Myanmar , Colistin/pharmacology , RNA, Ribosomal, 16S , Anti-Bacterial Agents/pharmacology , Aminoglycosides , Carbapenems
4.
J Clin Microbiol ; 60(12): e0139922, 2022 12 21.
Article En | MEDLINE | ID: mdl-36445156

Three isolates of the Enterobacter cloacae complex harboring mcr-9, a member of the colistin resistance mcr gene family encoded on plasmids, were susceptible to colistin, with MICs of 0.125 to 0.5 µg/mL in standard broth microdilution (BMD) tests using cation-adjusted Mueller-Hinton broth (CA-MHB) in accordance with European Committee on Antimicrobial Susceptibility Testing guidelines. In contrast, their MICs for colistin were significantly higher (4 to 128 µg/mL) when BMD tests were performed using brain-heart infusion (BHI) medium, Luria-Bertani (LB) broth, tryptic soy broth (TSB), or CA-MHB supplemented with casein, tryptonen or peptone. Colistin significantly induced mcr-9 expression in a dose-dependent manner when these mcr-9-positive isolates were cultured in BHI or CA-MHB supplemented with peptone/casein. Pretreatment of mcr-9-positive isolates and Escherichia coli DH5α harboring mcr-9 with colistin significantly increased their survival rates against LL-37, a human antimicrobial peptide. Electrospray ionization time-of-flight mass spectrometry analysis showed that a lipid A moiety of lipopolysaccharide was partially modified by phosphoethanolamine in E. coli DH5α harboring mcr-9 when treated with colistin. Of 93 clinical isolates of Enterobacteriaceae, only the mcr-9-positive isolates showed MICs to colistin that were at least 32 times higher in BHI than in CA-MHB. These mcr-9-positive isolates grew on a modified BHI agar, MCR9-JU, containing 3 µg/mL colistin. These results suggest that the BMD method using BHI is useful when performed together with the BMD method using CA-MHB to detect mcr-9-positive isolates and that MCR9-JU agar is useful in screening for Enterobacteriaceae isolates harboring mcr-9 and other colistin-resistant isolates.


Colistin , Escherichia coli Proteins , Humans , Colistin/pharmacology , Enterobacteriaceae , Anti-Bacterial Agents/pharmacology , Agar , Caseins/genetics , Caseins/pharmacology , Escherichia coli/genetics , Peptones/pharmacology , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Plasmids , Escherichia coli Proteins/genetics
5.
Int Dairy J ; 133: 105436, 2022 Oct.
Article En | MEDLINE | ID: mdl-35702275

Bovine whey IgG enriched fraction contains IgG antibodies against bacterial and viral pathogens, including antibodies against the spike protein [amino acids (aa) 1-1274] of SARS-CoV-2 Wuhan strain (2019-nCoV WHU01). To date, 13 SARS-CoV-2 variants have been identified, including gamma, delta, kappa, and omicron, which contain 10, eight, seven, and over 30 mutations in the spike protein, respectively. We investigated whether bovine whey IgG enriched fraction contains antibodies against spike proteins of these variants, specifically recombinant partial length spike proteins (aa 177-512, aa 509-685, aa 177-324, aa 250-410 and aa 387-516) of these variants. Direct enzyme-linked immunosorbent assays revealed bovine whey IgG enriched fraction contained antibodies against all recombinant spike proteins of these variants with highest reactivity against aa 177-512 region of omicron spike protein. These results indicate bovine whey IgG enriched fraction contains antibodies against spike proteins of several SARS-CoV-2 variants, including omicron.

6.
Viral Immunol ; 35(3): 254-258, 2022 04.
Article En | MEDLINE | ID: mdl-35290756

Data on the human immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins have been applied to vaccine development and diagnosing coronavirus disease 2019 (COVID-19), but little research has been done on the relationship between the human immune response and COVID-19 severity. We herein sought to determine whether there is a correlation between the immunoglobulin level and COVID-19 severity. Clinical samples were collected from 102 patients with COVID-19. Of these, 65 and 37 patients had mild and severe symptoms, respectively. An enzyme-linked immunosorbent assay using the recombinant SARS-CoV-2 nucleocapsid (N) protein, spike (S) protein, and synthetic peptides covering N and S as antigens was performed to measure the IgM and IgG levels. The correlation between the immunoglobulin level and COVID-19 severity was then analyzed. A significant difference in the level of IgG antibodies against N and of IgM antibodies against the receptor binding domain of the S protein was observed between patients with nonsevere and severe COVID-19 symptoms, and the level of IgG antibodies against N was found to be higher in patients with severe symptoms whereas the level of IgM antibodies against the S peptides was higher in patients with nonsevere symptoms. The level of specific antibodies against SARS-CoV-2 structural proteins might correlate with COVID-19 severity. If so, this fact may be useful for predicting the prognosis of the disease and in determining the appropriate treatment with greater precision.


COVID-19 , Nucleocapsid Proteins , Antibodies, Viral , COVID-19/diagnosis , Humans , Immunoglobulin G , Immunoglobulin M , Peptides , Recombinant Proteins , SARS-CoV-2
7.
J Virol Methods ; 302: 114477, 2022 04.
Article En | MEDLINE | ID: mdl-35077720

An immunochromatographic kit was developed to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses (A and B) on two detection positions of a single strip. The sensitivity and specificity for SARS-CoV-2 were 97.4 % and 100 %, respectively, and those for influenza viruses were 100 %, respectively.


COVID-19 , Influenza A virus , Influenza, Human , COVID-19/diagnosis , Humans , Influenza B virus , Influenza, Human/diagnosis , SARS-CoV-2 , Sensitivity and Specificity
8.
BMC Infect Dis ; 21(1): 1061, 2021 Oct 13.
Article En | MEDLINE | ID: mdl-34645409

BACKGROUND: The worldwide spread of carbapenemase-producing Enterobacteriaceae (CPE) has reduced the clinical utility of carbapenems. Plasmids often play an important role in the spread of genes encoding drug-resistance factors, especially in the horizontal transfer of these genes among species of Enterobacteriaceae. This study describes a patient infected with three species of CPE carrying an identical transferrable IncL/M plasmid. METHODS: Clinical isolates of CPE were collected at St. Luke's International Hospital, Tokyo, Japan, from 2015 to 2019. Three species of CPE isolates, Enterobacter cloacae, Klebsiella aerogenes and Serratia marcescens, were isolated from a patient who developed severe gallstone pancreatitis associated with bloodstream infection, with all three isolates producing IMP-1 metallo-ß-lactamase. The complete sequences of the plasmids of the three isolates were determined by both MiSeq and MinION. The medical chart of this patient was retrospectively reviewed conducted to obtain relevant clinical information. RESULTS: The three CPE species carried an IncL/M plasmid, pSL264, which was 81,133 bp in size and harbored blaIMP-1. The genetic environment surrounding blaIMP-1 consisted of int1-blaIMP-1-aac(6')-IIc-qacL-qacEdelta1-sul1-istB-IS21. Conjugation experiments showed that S. marcescens could transmit the plasmid to E. cloacae and K. aerogenes. In contrast, pSL264 could not transfer from E. cloacae or K. aerogenes to S. marcescens. CONCLUSION: The IncL/M plasmid pSL264 harboring blaIMP-1 was able to transfer among different species of Enterobacteriaceae in a patient receiving long-term antimicrobial treatment. The worldwide emergence and spread of IncL/M plasmids harboring carbapenemase-encoding genes among species of Enterobacteriaceae is becoming a serious public health hazard.


Enterobacteriaceae Infections , Enterobacteriaceae , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , beta-Lactamases/genetics , Enterobacter cloacae/genetics , Enterobacteriaceae/genetics , Enterobacteriaceae Infections/drug therapy , Microbial Sensitivity Tests , Plasmids/genetics , Retrospective Studies
9.
J Virol Methods ; 294: 114183, 2021 08.
Article En | MEDLINE | ID: mdl-33984393

BACKGROUND: The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the worldwide coronavirus disease-19 (COVID-19) pandemic, starting in late 2019. The standard diagnostic methods to detect SARS-CoV-2 are PCR-based genetic assays. Antigen-antibody-based immunochromatographic assays are alternative methods of detecting this virus. Rapid diagnosis kits to detect SARS-CoV-2 are urgently needed. STUDY DESIGN: Three monoclonal antibodies against SARS-CoV-2 nucleocapsid (N) protein were used to develop an antigen-antibody-based immunochromatographic kit to detect SARS-CoV-2. These assays were evaluated using  nasopharyngeal swab specimens collected from patients suspected of having COVID-19. RESULTS: These assays detected recombinant SARS-CoV-2 N protein at concentrations >0.2 ng/mL within 10 min after protein loading, but did not detect the N proteins of Middle East respiratory syndrome coronavirus (MERS-CoV), human coronaviruses OC43 (HCoV-OC43) and 299E (HCoV-229E) and other pathogens causing respiratory infections. Nasopharyngeal swab specimens obtained 1~3, 4~9, and ≥ 10 days after symptom onset from COVID-19 patients diagnosed by RT-PCR showed positivity rates of 100 %, >80 %, and <30 %, respectively. CONCLUSIONS: Kits using this immunochromatographic assay may be a rapid and useful tool for point-of-care diagnosis of COVID-19 when samples are obtained from patients 1~9 days after symptom onset.


COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , Immunoassay/methods , Animals , Antibodies, Monoclonal/immunology , COVID-19/blood , Humans , Nasopharynx/virology , Phosphoproteins/immunology , Rats , SARS-CoV-2
10.
Int Dairy J ; 117: 105002, 2021 Jun.
Article En | MEDLINE | ID: mdl-33526960

Bovine whey IgG enriched fraction contains antibodies against various human bacterial pathogens. It contains antibodies against some viral antigens, including human respiratory syncytial virus and influenza virus. We investigated whether the IgG enriched fraction has cross-reactivity with IgG antibodies against SARS-CoV-2 spike (S) and nucleocapsid (N) proteins. The full-length and partial-length SARS-CoV-2 S, N, a recombinant protein of the receptor binding domain (RBD) and nine peptides covering the receptor binding motif (RBM) of S were prepared. Direct enzyme-linked immunosorbent assays were conducted using these recombinant proteins and peptides as coating antigens and revealed the IgG enriched fraction contained antibodies against partial-length S [amino acids (aa) 177-512, 288-512, 348-578, 387-516 and 408-664], full-length N (aa 1-419) and partial-length N (aa 1-120, 111-220, 1-220 and 210-419), two RBD peptides, covering aa 427-446 and 502-520 of S, and recombinant RBD of S. These results indicate IgG enriched fraction contains antibodies against SARS-CoV-2.

11.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Article En | MEDLINE | ID: mdl-32816727

Four Providencia rettgeri isolates and one Providencia stuartii isolate were obtained from urine samples of five patients in 2018 in Japan. All of the isolates were resistant to imipenem and meropenem, and three were highly resistant to both carbapenems, with MICs of 512 µg/ml. The three highly carbapenem-resistant isolates harbored blaIMP-70, encoding a variant of IMP-1 metallo-ß-lactamase with two amino acid substitutions (Val67Phe and Phe87Val), and the other two harbored blaIMP-1 and blaIMP-11, respectively. Whole-genome sequencing revealed that an isolate harbored two copies of blaIMP-1 on the chromosome and that the other four harbored a copy of blaIMP-11 or blaIMP-70 in a plasmid. Expression of blaIMP-70 conferred carbapenem resistance in Escherichia coli Recombinant IMP-70 and an IMP-1 variant with Val67Phe but without Phe87Val had significant higher hydrolytic activities against meropenem than recombinant IMP-1, indicating that an amino acid substitution of Val67Phe affects increased activities against meropenem in IMP-70. These results suggest that Providencia spp. become more highly resistant to carbapenems by acquisition of two copies of blaIMP-1 or by mutation of blaIMP genes with amino acid substitutions, such as blaIMP-70.


Carbapenems , Providencia , Humans , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Carbapenems/pharmacology , Japan , Microbial Sensitivity Tests , Providencia/genetics
12.
BMC Infect Dis ; 20(1): 282, 2020 Apr 16.
Article En | MEDLINE | ID: mdl-32299378

BACKGROUND: The spread of Enterobacteriaceae producing both carbapenemases and Mcr, encoded by plasmid-mediated colistin resistance genes, has become a serious public health problem worldwide. This study describes three clinical isolates of Enterobacter cloacae complex co-harboring blaIMP-1 and mcr-9 that were resistant to carbapenem but susceptible to colistin. METHODS: Thirty-two clinical isolates of E. cloacae complex non-susceptible to carbapenems were obtained from patients at 14 hospitals in Japan. Their minimum inhibitory concentrations (MICs) were determined by broth microdilution methods and E-tests. Their entire genomes were sequenced by MiSeq and MinION methods. Multilocus sequence types were determined and a phylogenetic tree constructed by single nucleotide polymorphism (SNP) alignment of whole genome sequencing data. RESULTS: All 32 isolates showed MICs of ≥2 µg/ml for imipenem and/or meropenem. Whole-genome analysis revealed that all these isolates harbored blaIMP-1, with three also harboring mcr-9. These three isolates showed low MICs of 0.125 µg/ml for colistin. In two of these isolates, blaIMP-1 and mcr-9 were present on two separate plasmids, of sizes 62 kb and 280/290 kb, respectively. These two isolates did not possess a qseBC gene encoding a two-component system, which is thought to regulate the expression of mcr-9. In the third isolate, however, both blaIMP-1 and mcr-9 were present on the chromosome. CONCLUSION: The mcr-9 is silently distributed among carbapenem-resistant E. cloacae complex isolates, of which are emerging in hospitals in Japan. To our knowledge, this is the first report of isolates of E. cloacae complex harboring both blaIMP-1 and mcr-9 in Japan.


Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Drug Resistance, Bacterial/drug effects , Enterobacter cloacae/drug effects , Bacterial Proteins/genetics , Carbapenems/pharmacology , Enterobacter cloacae/genetics , Enterobacteriaceae Infections/microbiology , Humans , Imipenem/pharmacology , Japan , Meropenem/pharmacology , Microbial Sensitivity Tests , Phylogeny , Plasmids , Polymorphism, Single Nucleotide , beta-Lactamases/genetics
13.
mSphere ; 5(2)2020 03 11.
Article En | MEDLINE | ID: mdl-32161144

Surveillance of 10 hospitals and a regional public health laboratory in Myanmar identified 31 isolates of carbapenem-resistant Enterobacter cloacae complex harboring blaNDM-type Of these isolates, 19 were highly resistant to aminoglycosides and harbored one or more genes encoding 16S rRNA methylases, including armA, rmtB, rmtC, and/or rmtE Of the 19 isolates, 16 were Enterobacter xiangfangensis ST200, with armA on the chromosome and a plasmid harboring blaNDM-1 and rmtC, indicating that these isolates were clonally disseminated nationwide in Myanmar.IMPORTANCE The emergence of multidrug-resistant E. cloacae complex has become a public health threat worldwide. E. xiangfangensis is a recently classified species belonging to E. cloacae complex. Here, we report a clonal dissemination of multidrug-resistant E. xiangfangensis ST200 producing two types of New Delhi metallo-ß-lactamase (NDM-type MBL), NDM-1 and -4, and three types of 16S rRNA methylases, ArmA, RmtC, and RmtE, in hospitals in Myanmar. The observation of these multidrug-resistant E. xiangfangensis ST200 isolates stresses the urgency to continue molecular epidemiological surveillance of these pathogens in Myanmar and in South Asian countries.


Aminoglycosides/pharmacology , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial , Enterobacter cloacae/drug effects , Methyltransferases/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Enterobacter/drug effects , Enterobacter/genetics , Enterobacter cloacae/enzymology , Enterobacter cloacae/genetics , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Humans , Microbial Sensitivity Tests , Myanmar/epidemiology , Phylogeny , RNA, Ribosomal, 16S/genetics
14.
J Med Microbiol ; 69(4): 572-575, 2020 Apr.
Article En | MEDLINE | ID: mdl-32100711

Morganella morganii can harbour extended-spectrum ß-lactamases and carbapenemases, resulting in increased resistance to multiple antibiotics and a high mortality rate. This study describes the emergence of highly multidrug-resistant clinical isolates of M. morganii from Nepal co-producing NDM-type metallo-ß-lactamases, including NDM-1 and NDM-5, and the 16S rRNA methylase ArmA. This is the first report of M. morganii clinical isolates from Nepal co-producing NDM-1/-5 and ArmA. It is important to establish infection control systems and effective treatments against multidrug-resistant M. morganii.


Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae Infections/microbiology , Methyltransferases/metabolism , Morganella morganii/drug effects , Morganella morganii/isolation & purification , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Methyltransferases/genetics , Microbial Sensitivity Tests , Morganella morganii/enzymology , Morganella morganii/genetics , Nepal , beta-Lactamases/genetics
15.
Sci Rep ; 9(1): 1977, 2019 02 13.
Article En | MEDLINE | ID: mdl-30760856

Lignocellulosic biomass is anticipated to serve as a platform for green chemicals and fuels. Nonproductive binding of lignin to cellulolytic enzymes should be avoided for conversion of lignocellulose through enzymatic saccharification. Although carbohydrate-binding modules (CBMs) of cellulolytic enzymes strongly bind to lignin, the adsorption mechanism at molecular level is still unclear. Here, we report NMR-based analyses of binding sites on CBM1 of cellobiohydrolase I (Cel7A) from a hyper-cellulase-producing fungus, Trichoderma reesei, with cellohexaose and lignins from Japanese cedar (C-MWL) and Eucalyptus globulus (E-MWL). A method was established to obtain properly folded TrCBM1. Only TrCBM1 that was expressed in freshly transformed E. coli had intact conformation. Chemical shift perturbation analyses revealed that TrCBM1 adsorbed cellohexaose in highly specific manner via two subsites, flat plane surface and cleft, which were located on the opposite side of the protein surface. Importantly, MWLs were adsorbed at multiple binding sites, including the subsites, having higher affinity than cellohexaose. G6 and Q7 were involved in lignin binding on the flat plane surface of TrCBM1, while cellohexaose preferentially interacted with N29 and Q34. TrCBM1 used much larger surface area to bind with C-MWL than E-MWL, indicating the mechanisms of adsorption toward hardwood and softwood lignins are different.


Cellulose 1,4-beta-Cellobiosidase/metabolism , Lignin/metabolism , Receptors, Cell Surface/metabolism , Trichoderma/metabolism , Amino Acids/metabolism , Binding Sites/physiology , Cedrus/metabolism , Cellulase/metabolism , Eucalyptus/metabolism , Oligosaccharides/metabolism
16.
Sci Rep ; 9(1): 853, 2019 01 29.
Article En | MEDLINE | ID: mdl-30696857

Euglena gracilis is a microalga, which has been used as a model organism for decades. Recent technological advances have enabled mass cultivation of this species for industrial applications such as feedstock in nutritional foods and cosmetics. E. gracilis degrades its storage polysaccharide (paramylon) under hypoxic conditions for energy acquisition by an oxygen-independent process and accumulates high amount of wax-ester as a by-product. Using this sequence of reactions referred to as wax-ester fermentation, E. gracilis is studied for its application in biofuel production. Although the wax-ester production pathway is well characterized, little is known regarding the biochemical reactions underlying the main metabolic route, especially, the existence of an unknown sulfur-compound metabolism implied by the nasty odor generation accompanying the wax-ester fermentation. In this study, we show sulfur-metabolomics of E. gracilis in aerobic and hypoxic conditions, to reveal the biochemical reactions that occur during wax-ester synthesis. Our results helped us in identifying hydrogen sulfide (H2S) as the nasty odor-producing component in wax-ester fermentation. In addition, the results indicate that glutathione and protein degrades during hypoxia, whereas cysteine, methionine, and their metabolites increase in the cells. This indicates that this shift of abundance in sulfur compounds is the cause of H2S synthesis.


Euglena gracilis/physiology , Hypoxia/metabolism , Sulfur Compounds/isolation & purification , Anaerobiosis , Biofuels , Esters/metabolism , Fermentation , Glucans/metabolism , Hydrogen Sulfide , Metabolomics , Signal Transduction , Sulfur Compounds/metabolism , Waxes/metabolism
17.
ACS Omega ; 3(7): 7483-7493, 2018 Jul 31.
Article En | MEDLINE | ID: mdl-31458905

We have developed novel surface plasmon resonance (SPR) sensor chips whose surfaces bear newly synthesized functional self-assembled monolayer (SAM) anchoring lignin through covalent chemical bonds. The SPR sensor chips are remarkably robust and suitable for repetitive and accurate measurement of noncovalent lignin-peptide interactions, which is of significant interest in the chemical or biochemical conversion of renewable woody biomass to valuable chemical feedstocks. The lignin-anchored SAMs were prepared for the first time by click chemistry based on an azide-alkyne Huisgen cycloaddition: mixed SAMs are fabricated on gold thin film using a mixture of alkynyl and methyl thioalkyloligo(ethylene oxide) disulfides and then reacted with azidated milled wood lignins to furnish the functional SAMs anchoring lignins covalently. The resulting SAMs were characterized using infrared reflection-absorption, Raman, and X-ray photoelectron spectroscopies to confirm covalent immobilization of the lignins to the SAMs via triazole linkages and also to reveal that the SAM formation induces a helical conformation of the ethylene oxide chains. Further, SPR measurements of the noncovalent lignin-peptide interactions using lignin-binding peptides have demonstrated high reproducibility and durability of the prepared lignin-anchored sensor chips.

18.
Appl Microbiol Biotechnol ; 101(18): 6879-6889, 2017 Sep.
Article En | MEDLINE | ID: mdl-28756590

Sulfate (SO42-) is an often-utilized and well-understood inorganic sulfur source in microorganism culture. Recently, another inorganic sulfur source, thiosulfate (S2O32-), was proposed to be more advantageous in microbial growth and biotechnological applications. Although its assimilation pathway is known to depend on O-acetyl-L-serine sulfhydrylase B (CysM in Escherichia coli), its metabolism has not been extensively investigated. Therefore, we aimed to explore another yet-unidentified CysM-independent thiosulfate assimilation pathway in E. coli. ΔcysM cells could accumulate essential L-cysteine from thiosulfate as the sole sulfur source and could grow, albeit slowly, demonstrating that a CysM-independent thiosulfate assimilation pathway is present in E. coli. This pathway is expected to consist of the initial part of the thiosulfate to sulfite (SO32-) conversion, and the latter part might be shared with the final part of the known sulfate assimilation pathway [sulfite → sulfide (S2-) â†’ L-cysteine]. This is because thiosulfate-grown ΔcysM cells could accumulate a level of sulfite and sulfide equivalent to that of wild-type cells. The catalysis of thiosulfate to sulfite is at least partly mediated by thiosulfate sulfurtransferase (GlpE), because its overexpression could enhance cellular thiosulfate sulfurtransferase activity in vitro and complement the slow-growth phenotype of thiosulfate-grown ΔcysM cells in vivo. GlpE is therefore concluded to function in the novel CysM-independent thiosulfate assimilation pathway by catalyzing thiosulfate to sulfite. We applied this insight to L-cysteine overproduction in E. coli and succeeded in enhancing it by GlpE overexpression in media containing glucose or glycerol as the main carbon source, by up to ~1.7-fold (1207 mg/l) or ~1.5-fold (1529 mg/l), respectively.


Biosynthetic Pathways , Escherichia coli/metabolism , Thiosulfate Sulfurtransferase/metabolism , Thiosulfates/metabolism , Cysteine/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fermentation , Genetic Engineering , Glucose/metabolism , Glycerol/metabolism , Serine/metabolism , Sulfates/metabolism , Sulfides/metabolism , Sulfites/metabolism , Sulfur/metabolism , Thiosulfate Sulfurtransferase/genetics
19.
J Microbiol Methods ; 118: 159-63, 2015 Nov.
Article En | MEDLINE | ID: mdl-26381663

Rapid and reliable detection of aminoglycoside-resistant bacteria is an important infection-control measure and a crucial aspect of antimicrobial chemotherapy. The enzyme 16S rRNA methylase has been shown to mediate aminoglycoside resistance in bacteria. This study describes a newly developed immunochromatographic assay using novel monoclonal antibodies (mAbs) that recognize ArmA 16S rRNA methylase. Epitope mapping showed that these mAbs recognized amino acids 1-93 of ArmA, which consists of 257 amino acids. Evaluation of the assay using ArmA producing and non-producing bacterial species, as well as bacteria producing other types of 16S rRNA methylases, indicated that immunochromatographic detection of the ArmA-type 16S rRNA methylase was fully consistent with PCR analysis for armA genes, with all immunochromatographically positive strains being resistant to aminoglycosides (MIC≥128µg/mL). The detection limit of the assay was 12ng ArmA. These findings indicate that this assay can be used for the rapid and reliable detection of the production of ArmA 16S rRNA methylase by Gram-negative bacteria, including Acinetobacter baumannii and Escherichia coli.


Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Chromatography, Affinity/methods , Drug Resistance, Bacterial , Gram-Negative Bacteria/enzymology , Methyltransferases/analysis , Microbial Sensitivity Tests , Sensitivity and Specificity
20.
J Biochem ; 157(4): 251-60, 2015 Apr.
Article En | MEDLINE | ID: mdl-25398992

The essential ubiquitin ligase Rsp5 is a key enzyme involved in the degradation of abnormal or unfavourable proteins in the yeast Saccharomyces cerevisiae. Overexpression of human α-synuclein (α-syn), a small lipid-binding protein implicated in several neurodegenerative diseases, in S. cerevisiae leads to growth inhibition due to many intracellular defects, including accumulation of reactive oxygen species (ROS). Here, to understand the mechanism of Rsp5-mediated detoxification of α-syn, we isolated novel Rsp5 variants (T255A, D295G, P343S and N427D), which conferred α-syn tolerance to yeast cells. Interestingly, these mutants were phenotypically distinguished from our previously identified RSP5(T357A) mutation, which increases ubiquitination of the general amino acid permease Gap1. Among them, the RSP5(P343S) substitution accelerated the degradation of α-syn, suppressed the accumulation of intracellular ROS and enhanced the interaction with α-syn and its ubiquitination. In contrast, the RSP5(T255A) mutation did not contribute to degradation of α-syn, but improved cell growth under acetate stress conditions, possibly leading to alleviation of the α-syn toxicity. Thus, these novel mutations might be useful not only in elucidating the molecular basis by which disused proteins are specifically recognized and effectively removed but also in screening drug candidates for neurodegenerative diseases or in improving ethanol production under acidic fermentation conditions.


Endosomal Sorting Complexes Required for Transport/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Ubiquitin-Protein Ligase Complexes/metabolism , alpha-Synuclein/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/isolation & purification , Humans , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/isolation & purification , Ubiquitin-Protein Ligase Complexes/genetics , Ubiquitin-Protein Ligase Complexes/isolation & purification
...