Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Chem Ecol ; 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38900391

Leaf-cutting ants (Formicidae; Atta spp., Acromyrmex spp.) cut off pieces of leaves and other plant tissue and feed it to their symbiotic fungi. As this foraging behavior poses an imminent threat to agriculture, leaf-cutting ants are considered as pests of huge ecologically and economically importance. Consequently, research on leaf-cutting ants focused on their foraging decisions and interactions with their cultivated symbiotic fungi, whereas their effect on the attacked plants, apart from the loss of plant tissue, remains largely unknown. In this study, we investigated the consequences of an attack by leaf-cutting ants and analyzed the plants' defense responses in comparison to chewing caterpillars and mechanical damage. We found that an attack by leaf-cutting ants induces the production of jasmonates in several host and non-host plant species (Arabidopsis thaliana, Vicia faba, Phaseolus lunatus, Tococa quadrialata). Additionally, we showed in the natural host plant lima bean (P. lunatus) that leaf-cutting ant damage immediately leads to the emission of typical herbivory-induced plant volatiles, including green leaf volatiles and terpenoids. Further data exploration revealed clear differences in the defense-related phytohormone profile in plant species of Neotropical and Eurasian origin. Taken together, we show that leaf-cutting ant infestation and their way of clipping the plants' tissues induce jasmonate and jasmonates-mediated responses and do not differ from those to mechanical injury or larval feeding.

2.
Plant Signal Behav ; 19(1): 2360298, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38813798

This study investigated the accumulation of phenlyacetaldoxime (PAOx) and PAOx-Glc in Tococa quadrialata leaves in response to herbivore infestation and mechanical wounding. Results show that PAOx levels peaked at 24 h post-infestation, while PAOx-Glc remained present for several days. The accumulation of PAOx began as early as 3 h after herbivory, with PAOx-Glc significantly increased after 6 h. Mechanical wounding induced similar responses in PAOx and PAOx-Glc accumulation as herbivory, suggesting that continuous tissue damage triggers the production of these compounds. Interestingly, SpitWorm-treated leaves showed the highest levels of both PAOx and PAOx-Glc, indicating that herbivore-derived oral secretions (OS) play a role in the induction of these compounds. Additionally, JA-independent PAOx production was found to be associated with tissue damage rather than specific known signaling compounds. Emission of benzyl cyanide and 2-phenylethanol, PAOx-derived plant volatiles, was observed in response to herbivory and SpitWorm treatment providing plant-derived OS, further highlighting the role of herbivore cues in plant defense responses.


Herbivory , Plant Leaves , Herbivory/physiology , Plant Leaves/metabolism , Animals
...