Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 7(9): 1362-1372, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37550509

RESUMEN

As human activities increasingly shape land- and seascapes, understanding human-wildlife interactions is imperative for preserving biodiversity. Habitats are impacted not only by static modifications, such as roads, buildings and other infrastructure, but also by the dynamic movement of people and their vehicles occurring over shorter time scales. Although there is increasing realization that both components of human activity substantially affect wildlife, capturing more dynamic processes in ecological studies has proved challenging. Here we propose a conceptual framework for developing a 'dynamic human footprint' that explicitly incorporates human mobility, providing a key link between anthropogenic stressors and ecological impacts across spatiotemporal scales. Specifically, the dynamic human footprint integrates a range of metrics to fully acknowledge the time-varying nature of human activities and to enable scale-appropriate assessments of their impacts on wildlife behaviour, demography and distributions. We review existing terrestrial and marine human-mobility data products and provide a roadmap for how these could be integrated and extended to enable more comprehensive analyses of human impacts on biodiversity in the Anthropocene.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Ambiente , Actividades Humanas , Transportes , Planeta Tierra , Animales Salvajes , Ecosistema
2.
Glob Chang Biol ; 29(20): 5788-5801, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37306048

RESUMEN

Human activity and associated landscape modifications alter the movements of animals with consequences for populations and ecosystems worldwide. Species performing long-distance movements are thought to be particularly sensitive to human impact. Despite the increasing anthropogenic pressure, it remains challenging to understand and predict animals' responses to human activity. Here we address this knowledge gap using 1206 Global Positioning System movement trajectories of 815 individuals from 14 red deer (Cervus elaphus) and 14 elk (Cervus canadensis) populations spanning wide environmental gradients, namely the latitudinal range from the Alps to Scandinavia in Europe, and the Greater Yellowstone Ecosystem in North America. We measured individual-level movements relative to the environmental context, or movement expression, using the standardized metric Intensity of Use, reflecting both the directionality and extent of movements. We expected movement expression to be affected by resource (Normalized Difference Vegetation Index, NDVI) predictability and topography, but those factors to be superseded by human impact. Red deer and elk movement expression varied along a continuum, from highly segmented trajectories over relatively small areas (high intensity of use), to directed transitions through restricted corridors (low intensity of use). Human activity (Human Footprint Index, HFI) was the strongest driver of movement expression, with a steep increase in Intensity of Use as HFI increased, but only until a threshold was reached. After exceeding this level of impact, the Intensity of Use remained unchanged. These results indicate the overall sensitivity of Cervus movement expression to human activity and suggest a limitation of plastic responses under high human pressure, despite the species also occurring in human-dominated landscapes. Our work represents the first comparison of metric-based movement expression across widely distributed populations of a deer genus, contributing to the understanding and prediction of animals' responses to human activity.


Asunto(s)
Ciervos , Ecosistema , Humanos , Animales , Ciervos/fisiología , Actividades Humanas , América del Norte , Sistemas de Información Geográfica
3.
Animals (Basel) ; 13(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37106970

RESUMEN

Human-induced environmental alterations in the Alps may importantly affect small mammal species, but evidence in this sense is limited. We live-trapped small rodents in the Central-Eastern Italian Alps in three close-by habitat types (rocky scree, alpine grassland, and heath) at 2100 m a.s.l. during summer-fall, in 1997 and 2016. We compared small rodent assemblages through a Redundancy Detrended Analysis (RDA). In both surveys, we detected two specialist species, i.e., the common vole (Microtus arvalis) and the snow vole (Chionomys nivalis), and, unexpectedly, the forest generalist bank vole (Myodes glareolus). In 1997, grassland was mainly occupied by the common vole, while the bank vole and the snow vole were sympatric in the other habitats. In 2016, the snow vole was detected only in the scree, while other species did not show distribution changes. We discuss a series of hypotheses that might have driven the differences observed across decades, among which is a species-specific response to abiotic and biotic environmental alterations, with the alpine habitat specialist moving out of sub-optimal habitats. We encourage further research on this topic, e.g., via long-term longitudinal studies.

4.
Ecol Lett ; 24(8): 1556-1568, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34028149

RESUMEN

Alpine large herbivores have developed physiological and behavioural mechanisms to cope with fluctuations in climate and resource availability that may become maladaptive under climate warming. We tested this hypothesis in female Alpine ibex (Capra ibex) by modelling annual and daily movement and activity patterns in relation to temperature, vegetation productivity and reproductive status based on bio-logging data and climate change projections. In summer, ibex moved upslope, tracking the green wave. Ibex decreased diel activity sharply above a threshold temperature of 13-14°C, indicating thermal stress, but compensated behaviourally by foraging both earlier and later in the day, and by moving further upslope than on cooler days, especially reproductive females. This critical temperature will be exceeded three times as often under climate change projections. Under such scenarios, the altitudinal extent of the area will limit the available habitat providing thermal shelter, potentially impacting performance and population distribution of this emblematic mountain ungulate.


Asunto(s)
Cambio Climático , Calor , Ecosistema , Femenino , Humanos , Estaciones del Año , Temperatura
5.
Sci Rep ; 11(1): 7600, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33828110

RESUMEN

Ungulates in alpine ecosystems are constrained by winter harshness through resource limitation and direct mortality from weather extremes. However, little empirical evidence has definitively established how current climate change and other anthropogenic modifications of resource availability affect ungulate winter distribution, especially at their range limits. Here, we used a combination of historical (1997-2002) and contemporary (2012-2015) Eurasian roe deer (Capreolus capreolus) relocation datasets that span changes in snowpack characteristics and two levels of supplemental feeding to compare and forecast probability of space use at the species' altitudinal range limit. Scarcer snow cover in the contemporary period interacted with the augmented feeding site distribution to increase the elevation of winter range limits, and we predict this trend will continue under climate change. Moreover, roe deer have shifted from historically using feeding sites primarily under deep snow conditions to contemporarily using them under a wider range of snow conditions as their availability has increased. Combined with scarcer snow cover during December, January, and April, this trend has reduced inter-annual variability in space use patterns in these months. These spatial responses to climate- and artificial resource-provisioning shifts evidence the importance of these changing factors in shaping large herbivore spatial distribution and, consequently, ecosystem dynamics.


Asunto(s)
Ciervos/psicología , Conducta Alimentaria/fisiología , Migración Animal/fisiología , Animales , Cambio Climático , Ciervos/fisiología , Demografía/tendencias , Ecosistema , Conducta Alimentaria/psicología , Alimentos , Herbivoria/fisiología , Estaciones del Año , Nieve , Tundra , Tiempo (Meteorología)
6.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33837149

RESUMEN

Many animals restrict their movements to a characteristic home range. This constrained pattern of space use is thought to result from the foraging benefits of memorizing the locations and quality of heterogeneously distributed resources. However, due to the confounding effects of sensory perception, the role of memory in home-range movement behavior lacks definitive evidence in the wild. Here, we analyze the foraging decisions of a large mammal during a field resource manipulation experiment designed to disentangle the effects of memory and perception. We parametrize a mechanistic model of spatial transitions using experimental data to quantify the cognitive processes underlying animal foraging behavior and to predict how individuals respond to resource heterogeneity in space and time. We demonstrate that roe deer (Capreolus capreolus) rely on memory, not perception, to track the spatiotemporal dynamics of resources within their home range. Roe deer foraging decisions were primarily based on recent experience (half-lives of 0.9 and 5.6 d for attribute and spatial memory, respectively), enabling them to adapt to sudden changes in resource availability. The proposed memory-based model was able to both quantify the cognitive processes underlying roe deer behavior and accurately predict how they shifted resource use during the experiment. Our study highlights the fact that animal foraging decisions are based on incomplete information on the locations of available resources, a factor that is critical to developing accurate predictions of animal spatial behavior but is typically not accounted for in analyses of animal movement in the wild.


Asunto(s)
Ciervos/fisiología , Conducta Alimentaria , Memoria , Animales , Cognición , Toma de Decisiones , Movimiento
7.
Animals (Basel) ; 10(11)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182794

RESUMEN

Winter supplemental feeding of ungulates potentially alters their use of resources and ecological interactions, yet relatively little is known about the patterns of feeding sites use by target populations. We used camera traps to continuously monitor winter and spring feeding site use in a roe deer population living in a peri-urban area in Northern Italy. We combined circular statistics with generalized additive and linear mixed models to analyze the diel and seasonal pattern of roe deer visits to feeding sites, and the behavioral drivers influencing visit duration. Roe deer visits peaked at dawn and dusk, and decreased from winter to spring when vegetation regrows and temperature increases. Roe deer mostly visited feeding sites solitarily; when this was not the case, they stayed longer at the site, especially when conspecifics were eating, but maintained a bimodal diel pattern of visits. These results support an opportunistic use of feeding sites, following seasonal cycles and the roe deer circadian clock. Yet, the attractiveness of these artificial resources has the potential to alter intra-specific relationships, as competition for their use induces gatherings and may extend the contact time between individuals, with potential behavioral and epidemiological consequences.

8.
Sci Rep ; 10(1): 11946, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32686691

RESUMEN

The link between spatio-temporal resource patterns and animal movement behaviour is a key ecological process, however, limited experimental support for this connection has been produced at the home range scale. In this study, we analysed the spatial responses of a resident large herbivore (roe deer Capreolus capreolus) using an in situ manipulation of a concentrated food resource. Specifically, we experimentally altered feeding site accessibility to roe deer and recorded (for 25 animal-years) individual responses by GPS tracking. We found that, following the loss of their preferred resource, roe deer actively tracked resource dynamics leading to more exploratory movements, and larger, spatially-shifted home ranges. Then, we showed, for the first time experimentally, the importance of site fidelity in the maintenance of large mammal home ranges by demonstrating the return of individuals to their familiar, preferred resource despite the presence of alternate, equally-valuable food resources. This behaviour was modulated at the individual level, where roe deer characterised by a high preference for feeding sites exhibited more pronounced behavioural adjustments during the manipulation. Together, our results establish the connections between herbivore movements, space-use, individual preference, and the spatio-temporal pattern of resources in home ranging behaviour.


Asunto(s)
Conducta Animal , Herbivoria , Animales , Ciervos , Fenómenos de Retorno al Lugar Habitual , Modelos Teóricos
9.
J Anim Ecol ; 82(6): 1326-39, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23855883

RESUMEN

1. Because many large mammal species have wide geographical ranges, spatially distant populations may be confronted with different sets of environmental conditions. Investigating how home range (HR) size varies across environmental gradients should yield a better understanding of the factors affecting large mammal ecology. 2. We evaluated how HR size of a large herbivore, the roe deer (Capreolus capreolus), varies in relation to seasonality, latitude (climate), weather, plant productivity and landscape features across its geographical range in Western Europe. As roe deer are income breeders, expected to adjust HR size continuously to temporal variation in food resources and energetic requirements, our baseline prediction was for HR size to decrease with proxies of resource availability. 3. We used GPS locations of roe deer collected from seven study sites (EURODEER collaborative project) to estimate fixed-kernel HR size at weekly and monthly temporal scales. We performed an unusually comprehensive analysis of variation in HR size among and within populations over time across the geographical range of a single species using generalized additive mixed models and linear mixed models, respectively. 4. Among populations, HR size decreased with increasing values for proxies of forage abundance, but increased with increases in seasonality, stochastic variation of temperature, latitude and snow cover. Within populations, roe deer HR size varied over time in relation to seasonality and proxies of forage abundance in a consistent way across the seven populations. Thus, our findings were broadly consistent across the distributional range of this species, demonstrating a strong and ubiquitous link between the amplitude and timing of environmental seasonality and HR size at the continental scale. 5. Overall, the variability in average HR size of roe deer across Europe reflects the interaction among local weather, climate and seasonality, providing valuable insight into the limiting factors affecting this large herbivore under contrasting conditions. The complexity of the relationships suggests that predicting ranging behaviour of large herbivores in relation to current and future climate change will require detailed knowledge not only about predicted increases in temperature, but also how this interacts with factors such as day length and climate predictability.


Asunto(s)
Clima , Ciervos/fisiología , Fenómenos de Retorno al Lugar Habitual , Estaciones del Año , Tiempo (Meteorología) , Animales , Europa (Continente) , Femenino , Sistemas de Información Geográfica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...