Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell Mol Life Sci ; 80(9): 268, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37632572

RESUMEN

Aortic valve degeneration (AVD) is a life-threatening condition that has no medical treatment and lacks individual therapies. Although extensively studied with standard approaches, aetiologies behind AVD are unclear. We compared abundances of extracellular matrix (ECM) proteins from excised valve tissues of 88 patients with isolated AVD of normal tricuspid (TAV) and congenital bicuspid aortic valves (BAV), quantified more than 1400 proteins per ECM sample by mass spectrometry, and demonstrated that local ECM preserves molecular cues of the pathophysiological processes. The BAV ECM showed enrichment with fibrosis markers, namely Tenascin C, Osteoprotegerin, and Thrombospondin-2. The abnormal physical stress on BAV may cause a mechanical injury leading to a continuous Tenascin C-driven presence of myofibroblasts and persistent fibrosis. The TAV ECM exhibited enrichment with Annexin A3 (p = 1.1 × 10-16 and the fold change 6.5) and a significant deficit in proteins involved in high-density lipid metabolism. These results were validated by orthogonal methods. The difference in the ECM landscape suggests distinct aetiologies between AVD of BAV and TAV; warrants different treatments of the patients with BAV and TAV; elucidates the molecular basis of AVD; and implies possible new therapeutic approaches. Our publicly available database (human_avd_ecm.surgsci.uu.se) is a rich source for medical doctors and researchers who are interested in AVD or heart ECM in general. Systematic proteomic analysis of local ECM using the methods described here may facilitate future studies of various tissues and organs in development and disease.


Asunto(s)
Válvula Aórtica , Tenascina , Humanos , Proteómica , Matriz Extracelular , Aorta
2.
Front Oncol ; 13: 1143811, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091144

RESUMEN

Chronic lymphocytic leukemia (CLL) is a clinically and biologically heterogeneous disease with varying outcomes. In the last decade, the application of next-generation sequencing technologies has allowed extensive mapping of disease-specific genomic, epigenomic, immunogenetic, and transcriptomic signatures linked to CLL pathogenesis. These technologies have improved our understanding of the impact of tumor heterogeneity and evolution on disease outcome, although they have mostly been performed on bulk preparations of nucleic acids. As a further development, new technologies have emerged in recent years that allow high-resolution mapping at the single-cell level. These include single-cell RNA sequencing for assessment of the transcriptome, both of leukemic and non-malignant cells in the tumor microenvironment; immunogenetic profiling of B and T cell receptor rearrangements; single-cell sequencing methods for investigation of methylation and chromatin accessibility across the genome; and targeted single-cell DNA sequencing for analysis of copy-number alterations and single nucleotide variants. In addition, concomitant profiling of cellular subpopulations, based on protein expression, can also be obtained by various antibody-based approaches. In this review, we discuss different single-cell sequencing technologies and how they have been applied so far to study CLL onset and progression, also in response to treatment. This latter aspect is particularly relevant considering that we are moving away from chemoimmunotherapy to targeted therapies, with a potentially distinct impact on clonal dynamics. We also discuss new possibilities, such as integrative multi-omics analysis, as well as inherent limitations of the different single-cell technologies, from sample preparation to data interpretation using available bioinformatic pipelines. Finally, we discuss future directions in this rapidly evolving field.

3.
Front Oncol ; 13: 1097942, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816924

RESUMEN

Background: Microenvironmental interactions of the malignant clone with T cells are critical throughout the natural history of chronic lymphocytic leukemia (CLL). Indeed, clonal expansions of T cells and shared clonotypes exist between different CLL patients, strongly implying clonal selection by antigens. Moreover, immunogenic neoepitopes have been isolated from the clonotypic B cell receptor immunoglobulin sequences, offering a rationale for immunotherapeutic approaches. Here, we interrogated the T cell receptor (TR) gene repertoire of CLL patients with different genomic aberration profiles aiming to identify unique signatures that would point towards an additional source of immunogenic neoepitopes for T cells. Experimental design: TR gene repertoire profiling using next generation sequencing in groups of patients with CLL carrying one of the following copy-number aberrations (CNAs): del(11q), del(17p), del(13q), trisomy 12, or gene mutations in TP53 or NOTCH1. Results: Oligoclonal expansions were found in all patients with distinct recurrent genomic aberrations; these were more pronounced in cases bearing CNAs, particularly trisomy 12, rather than gene mutations. Shared clonotypes were found both within and across groups, which appeared to be CLL-biased based on extensive comparisons against TR databases from various entities. Moreover, in silico analysis identified TR clonotypes with high binding affinity to neoepitopes predicted to arise from TP53 and NOTCH1 mutations. Conclusions: Distinct TR repertoire profiles were identified in groups of patients with CLL bearing different genomic aberrations, alluding to distinct selection processes. Abnormal protein expression and gene dosage effects associated with recurrent genomic aberrations likely represent a relevant source of CLL-specific selecting antigens.

4.
Nat Commun ; 13(1): 6226, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266272

RESUMEN

Cancer heterogeneity at the proteome level may explain differences in therapy response and prognosis beyond the currently established genomic and transcriptomic-based diagnostics. The relevance of proteomics for disease classifications remains to be established in clinically heterogeneous cancer entities such as chronic lymphocytic leukemia (CLL). Here, we characterize the proteome and transcriptome alongside genetic and ex-vivo drug response profiling in a clinically annotated CLL discovery cohort (n = 68). Unsupervised clustering of the proteome data reveals six subgroups. Five of these proteomic groups are associated with genetic features, while one group is only detectable at the proteome level. This new group is characterized by accelerated disease progression, high spliceosomal protein abundances associated with aberrant splicing, and low B cell receptor signaling protein abundances (ASB-CLL). Classifiers developed to identify ASB-CLL based on its characteristic proteome or splicing signature in two independent cohorts (n = 165, n = 169) confirm that ASB-CLL comprises about 20% of CLL patients. The inferior overall survival in ASB-CLL is also independent of both TP53- and IGHV mutation status. Our multi-omics analysis refines the classification of CLL and highlights the potential of proteomics to improve cancer patient stratification beyond genetic and transcriptomic profiling.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Proteogenómica , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Proteómica , Proteoma/genética , Mutación , Receptores de Antígenos de Linfocitos B/metabolismo
5.
Metabol Open ; 13: 100167, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35528374

RESUMEN

Objective: Cell metabolism has been shown to play an active role in regulation of stemness and fate decision. In order to identify favorable culture conditions for mesenchymal stromal cells (MSCs) prior to transplantation, this study aimed to characterize the metabolic function of MSCs from different developmental stages in response to different oxygen tension during expansion. Materials and methods: We cultured human fetal cardiac MSCs and human adult bone-marrow MSCs for a week under hypoxia (3% O2) and normoxia (20% O2). We performed mitochondrial characterization and assessed oxygen consumption- and extracellular acidification-rates (OCR and ECAR) in addition to oxygen-sensitive respiration and mitochondrial complex activities, using both the Seahorse and Oroboros systems. Results: Adult and fetal MSCs displayed similar basal respiration and mitochondrial amount, however fetal MSCs had lower spare respiratory capacity and apparent coupling efficiency. Fetal MSCs expanded in either hypoxia or normoxia demonstrated similar acidification rates, while adult MSCs downregulated their aerobic glycolysis in normoxia. Acute decrease in oxygen tension caused a higher respiratory inhibition in adult compared to fetal MSCs. In both sources of MSCs, minor changes in complex activities in normoxic and hypoxic cultures were found. Conclusions: In contrast to adult MSCs, fetal MSCs displayed similar respiration and aerobic glycolysis at different O2 culture concentrations during expansion. Adult MSCs adjusted their respiration to glycolytic activities, depending on the culture conditions thus displaying a more mature metabolic function. These findings are relevant for establishing optimal in vitro culturing conditions, with the aim to maximize engraftment and therapeutic outcome.

6.
Stem Cells ; 39(12): 1751-1765, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34418223

RESUMEN

Extracellular matrix (ECM) components govern a range of cell functions, such as migration, proliferation, maintenance of stemness, and differentiation. Cell niches that harbor stem-/progenitor cells, with matching ECM, have been shown in a range of organs, although their presence in the heart is still under debate. Determining niches depends on a range of in vitro and in vivo models and techniques, where animal models are powerful tools for studying cell-ECM dynamics; however, they are costly and time-consuming to use. In vitro models based on recombinant ECM proteins lack the complexity of the in vivo ECM. To address these issues, we present the spatiotemporal extracellular matrix model for studies of cell-ECM dynamics, such as cell niches. This model combines gentle decellularization and sectioning of cardiac tissue, allowing retention of a complex ECM, with recellularization and subsequent image processing using image stitching, segmentation, automatic binning, and generation of cluster maps. We have thereby developed an in situ representation of the cardiac ECM that is useful for assessment of repopulation dynamics and to study the effect of local ECM composition on phenotype preservation of reseeded mesenchymal progenitor cells. This model provides a platform for studies of organ-specific cell-ECM dynamics and identification of potential cell niches.


Asunto(s)
Matriz Extracelular , Células Madre Mesenquimatosas , Animales , Diferenciación Celular , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Células Madre , Andamios del Tejido
7.
Biores Open Access ; 9(1): 269-278, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33376633

RESUMEN

Aortic valve stenosis is one of the most common cardiovascular diseases in western countries and can only be treated by replacement with a prosthetic valve. Tissue engineering is an emerging and promising treatment option, but in-depth knowledge about the microstructure of native heart valves is lacking, making the development of tissue-engineered heart valves challenging. Specifically, the basement membrane (BM) of heart valves remains incompletely characterized, and decellularization protocols that preserve BM components are necessary to advance the field. This study aims to characterize laminin isoforms expressed in healthy human aortic valves and establish a small animal decellularized aortic valve scaffold for future studies of the BM in tissue engineering. Laminin isoforms were assessed by immunohistochemistry with antibodies specific for individual α, ß, and γ chains. The results indicated that LN-411, LN-421, LN-511, and LN-521 are expressed in human aortic valves (n = 3), forming a continuous monolayer in the endothelial BM, whereas sparsely found in the interstitium. Similar results were seen in rat aortic valves (n = 3). Retention of laminin and other BM components, concomitantly with effective removal of cells and residual DNA, was achieved through 3 h exposure to 1% sodium dodecyl sulfate and 30 min exposure to 1% Triton X-100, followed by nuclease processing in rat aortic valves (n = 3). Our results provide crucial data on the microenvironment of valvular cells relevant for research in both tissue engineering and heart valve biology. We also describe a decellularized rat aortic valve scaffold useful for mechanistic studies on the role of the BM in heart valve regeneration.

8.
J Thorac Cardiovasc Surg ; 159(6): 2525-2537.e23, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31859073

RESUMEN

OBJECTIVE: Synthetic tracheal grafts seeded with autologous bone marrow-mononuclear cells (BM-MNCs) have been described as becoming living and functional grafts representing a promising option for tracheal replacement for pathologies unamenable by segmental resection or autologous repair. This study aimed to present the first long-term follow-up of these procedures in humans. METHODS: We retrospectively analyzed 3 patients who received synthetic tracheal grafts seeded with BM-MNCs implanted. RESULTS: Patient 1 was a 37-year-old man with mucoepidermoid carcinoma, the first-ever human to receive a synthetic tracheal graft seeded with BM-MNCs. Patient 2 was a 30-year-old man with adenoid cystic carcinoma, and patient 3 was a 22-year-old woman with an iatrogenic tracheal injury. All patients developed graft-related complications necessitating multiple surgical reinterventions. Patient 1 was hospitalized for 8 months before dying from respiratory failure secondary to graft dehiscence 32 months after implantation. Patient 2 died 3.5 months after implantation from undisclosed causes. Patient 3 received a second synthetic tracheal graft after 11 months and an allogeneic trachea and lung transplantation 45 months after the primary implantation. Patient 3 underwent 191 surgical interventions after the primary implantation and spent 55 months in the intensive care unit before dying from airway bleeding. All patients' bronchoscopic, histologic, and radiologic investigations demonstrated graft-associated complications, including anastomotic fistulae and obstructive granulation tissue, without graft vascularization, mucosal lining, or integration into adjacent tissues. CONCLUSIONS: Synthetic tracheal grafts seeded with BM-MNCs do not become living functional tracheal grafts and lead to debilitating complications and death.


Asunto(s)
Células de la Médula Ósea/fisiología , Trasplante de Médula Ósea , Carcinoma Adenoide Quístico/cirugía , Carcinoma Mucoepidermoide/cirugía , Enfermedad Iatrogénica , Traumatismos Torácicos/cirugía , Ingeniería de Tejidos , Andamios del Tejido , Tráquea/trasplante , Neoplasias de la Tráquea/cirugía , Adulto , Carcinoma Adenoide Quístico/diagnóstico por imagen , Carcinoma Adenoide Quístico/patología , Carcinoma Mucoepidermoide/diagnóstico por imagen , Carcinoma Mucoepidermoide/patología , Células Cultivadas , Resultado Fatal , Femenino , Humanos , Masculino , Estudios Retrospectivos , Traumatismos Torácicos/diagnóstico por imagen , Traumatismos Torácicos/patología , Tráquea/diagnóstico por imagen , Tráquea/lesiones , Tráquea/patología , Neoplasias de la Tráquea/diagnóstico por imagen , Neoplasias de la Tráquea/patología , Trasplante Autólogo , Resultado del Tratamiento , Adulto Joven
9.
Cell ; 179(7): 1647-1660.e19, 2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31835037

RESUMEN

The process of cardiac morphogenesis in humans is incompletely understood. Its full characterization requires a deep exploration of the organ-wide orchestration of gene expression with a single-cell spatial resolution. Here, we present a molecular approach that reveals the comprehensive transcriptional landscape of cell types populating the embryonic heart at three developmental stages and that maps cell-type-specific gene expression to specific anatomical domains. Spatial transcriptomics identified unique gene profiles that correspond to distinct anatomical regions in each developmental stage. Human embryonic cardiac cell types identified by single-cell RNA sequencing confirmed and enriched the spatial annotation of embryonic cardiac gene expression. In situ sequencing was then used to refine these results and create a spatial subcellular map for the three developmental phases. Finally, we generated a publicly available web resource of the human developing heart to facilitate future studies on human cardiogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Miocitos Cardíacos/metabolismo , Análisis de la Célula Individual , Transcriptoma , Femenino , Humanos , Masculino , Morfogénesis , Miocitos Cardíacos/citología , RNA-Seq
10.
Stem Cell Res Ther ; 10(1): 371, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31801632

RESUMEN

BACKGROUND: Mesenchymal stromal cells (MSCs), due to their regenerative and immunomodulatory properties, are therapeutically used for diseases, including heart failure. As early gestational-phase embryonic tissues exhibit extraordinary regenerative potential, fetal MSCs exposed to inflammation offer a unique opportunity to evaluate molecular mechanisms underlying preferential healing, and investigate their inherent abilities to communicate with the immune system during development. The principal aim of this study was to evaluate the effects of interferon-γ (IFNγ) on the immunomodulatory effects of first-trimester human fetal cardiac (hfc)-MSCs. METHODS: hfcMSCs (gestational week 8) were exposed to IFNγ, with subsequent analysis of the whole transcriptome, based on RNA sequencing. Exploration of surface-expressed immunoregulatory mediators and modulation of T cell responses were performed by flow cytometry. Presence and activity of soluble mediators were assessed by ELISA or high-performance liquid chromatography. RESULTS: Stimulation of hfcMSCs with IFNγ revealed significant transcriptional changes, particularly in respect to the expression of genes belonging to antigen presentation pathways, cell cycle control, and interferon signaling. Expression of immunomodulatory genes and associated functional changes, including indoleamine 2,3-dioxygenase activity, and regulation of T cell activation and proliferation via programmed cell death protein (PD)-1 and its ligands PD-L1 and PD-L2, were significantly upregulated. These immunoregulatory molecules diminished rapidly upon withdrawal of inflammatory stimulus, indicating a high degree of plasticity by hfcMSCs. CONCLUSIONS: To our knowledge, this is the first study performing a systematic evaluation of inflammatory responses and immunoregulatory properties of first-trimester cardiac tissue. In summary, our study demonstrates the dynamic responsiveness of hfcMSCs to inflammatory stimuli. Further understanding as to the immunoregulatory properties of hfcMSCs may be of benefit in the development of novel stromal cell therapeutics for cardiovascular disease.


Asunto(s)
Inmunomodulación/efectos de los fármacos , Interferón gamma/farmacología , Transcriptoma/efectos de los fármacos , Apoptosis/efectos de los fármacos , Antígeno B7-H1/metabolismo , Proliferación Celular , Feto/citología , Antígenos HLA/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Activación de Linfocitos/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Receptores de Interferón/metabolismo , Linfocitos T/citología , Linfocitos T/metabolismo , Receptor de Interferón gamma
11.
Cytotherapy ; 21(4): 380-392, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30876741

RESUMEN

Stem cells (SCs) have been proven to possess regenerative and immunomodulatory properties and can be used to treat diseases that involve loss of cells due to tissue damage or inflammation. For this approach to succeed, SCs or their derivatives should be able to engraft in the target tissue at least for a short period of time. Unfortunately, once injected, therapeutic SCs will encounter a hostile environment, including hypoxia, lack of nutrients and stromal support, and cells may also be targeted and rejected by the immune system. Therefore, SC's stress-response mechanisms likely play a significant role in survival of injected cells and possibly contribute to their therapeutic efficacy. Autphagy, a stress-response pathway, is involved in many different cellular processes, such as survival during hypoxia and nutrient deprivation, cellular differentiation and de-differentiation, and it can also contribute to their immunovisibility by regulating antigen presentation and cytokine secretion. Autophagy machinery interacts with many proteins and signaling pathways that regulate SC properties, including PI3K/Akt, mammalian target of rapamycin (mTOR), Wnt, Hedgehog and Notch, and it is also involved in regulating intracellular reactive oxygen species (ROS) levels. In this review, we contend that autophagy is an important therapeutic target that can be used to improve the outcome of SC-based tissue repair and regeneration. Further research should reveal whether inhibition or stimulation of autophagy increases the therapeutic utility of SCs and it should also identify appropriate therapeutic regimens that can be applied in the clinic.


Asunto(s)
Autofagia , Trasplante de Células Madre , Células Madre/citología , Animales , Diferenciación Celular , Matriz Extracelular/metabolismo , Humanos , Transducción de Señal
12.
Stem Cells Dev ; 28(5): 310-318, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30618344

RESUMEN

Mesenchymal stromal cells (MSCs) have shown great potential as a treatment for systemic inflammatory diseases, but their local regenerative properties are highly tissue- and site specific. Previous studies have demonstrated that adult human MSCs respond to inflammatory cytokines through the release of paracrine factors that stimulate angiogenesis, but they do not themselves differentiate into vascular structures in vivo. In this study, we used human fetal cardiac MSCs (hfcMSCs) harvested during the first trimester of heart development and injected them into the subcutaneous tissue of normal immunocompetent mice treated with short-term costimulation blockade for tolerance induction. When hfcMSCs were transplanted subcutaneously together with Matrigel matrix, they contributed to vasculogenesis through differentiation into endothelial cells and generation of the basal membrane protein Laminin α4. These characteristics of hfcMSCs are similar to the mesodermal progenitors giving rise to the developing heart and they may be useful for treatment of ischemic injuries.


Asunto(s)
Diferenciación Celular , Células Endoteliales/citología , Células Madre Embrionarias Humanas/citología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Miocitos Cardíacos/citología , Neovascularización Fisiológica , Animales , Células Cultivadas , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Femenino , Células Madre Embrionarias Humanas/metabolismo , Humanos , Tolerancia Inmunológica , Laminina/genética , Laminina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Miocitos Cardíacos/metabolismo
13.
Sci Rep ; 8(1): 2777, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29426841

RESUMEN

Disturbed flow has been suggested to contribute to aneurysm susceptibility in bicuspid aortic valve (BAV) patients. Lately, flow has emerged as an important modulator of DNA methylation. Hear we combined global methylation analysis with in vitro studies of flow-sensitive methylation to identify biological processes associated with BAV-aortopathy and the potential contribution of flow. Biopsies from non-dilated and dilated ascending aortas were collected from BAV (n = 21) and tricuspid aortic valve (TAV) patients (n = 23). DNA methylation and gene expression was measured in aortic intima-media tissue samples, and in EA.hy926 and primary aortic endothelial cells (ECs) isolated from BAV and TAV exposed to oscillatory (±12 dynes/cm2) or laminar (12 dynes/cm2) flow. We show methylation changes related to epithelial-mesenchymal-transition (EMT) in the non-dilated BAV aorta, associated with oscillatory flow related to endocytosis. The results indicate that the flow-response in BAV ECs involves hypomethylation and increased expression of WNT/ß-catenin genes, as opposed to an angiogenic profile in TAV ECs. The EMT-signature was exasperated in dilated BAV aortas. Aberrant EMT in BAV aortic walls could contribute to increased aneurysm susceptibility, and may be due to disturbed flow-exposure. Perturbations during the spatiotemporally related embryonic development of ascending aorta and semilunar valves can however not be excluded.


Asunto(s)
Aorta , Válvula Aórtica/anomalías , Circulación Sanguínea , Metilación de ADN , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal , Enfermedades de las Válvulas Cardíacas/metabolismo , Válvula Tricúspide/metabolismo , Aorta/citología , Aorta/metabolismo , Válvula Aórtica/metabolismo , Enfermedad de la Válvula Aórtica Bicúspide , Dilatación Patológica , Células Endoteliales/citología , Humanos , Transcriptoma
14.
Circ Res ; 120(4): 633-644, 2017 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-27895035

RESUMEN

RATIONALE: In the search for markers and modulators of vascular disease, microRNAs (miRNAs) have emerged as potent therapeutic targets. OBJECTIVE: To investigate miRNAs of clinical interest in patients with unstable carotid stenosis at risk of stroke. METHODS AND RESULTS: Using patient material from the BiKE (Biobank of Karolinska Endarterectomies), we profiled miRNA expression in patients with stable versus unstable carotid plaque. A polymerase chain reaction-based miRNA array of plasma, sampled at the carotid lesion site, identified 8 deregulated miRNAs (miR-15b, miR-29c, miR-30c/d, miR-150, miR-191, miR-210, and miR-500). miR-210 was the most significantly downregulated miRNA in local plasma material. Laser capture microdissection and in situ hybridization revealed a distinct localization of miR-210 in fibrous caps. We confirmed that miR-210 directly targets the tumor suppressor gene APC (adenomatous polyposis coli), thereby affecting Wnt (Wingless-related integration site) signaling and regulating smooth muscle cell survival, as well as differentiation in advanced atherosclerotic lesions. Substantial changes in arterial miR-210 were detectable in 2 rodent models of vascular remodeling and plaque rupture. Modulating miR-210 in vitro and in vivo improved fibrous cap stability with implications for vascular disease. CONCLUSIONS: An unstable carotid plaque at risk of stroke is characterized by low expression of miR-210. miR-210 contributes to stabilizing carotid plaques through inhibition of APC, ensuring smooth muscle cell survival. We present local delivery of miR-210 as a therapeutic approach for prevention of atherothrombotic vascular events.


Asunto(s)
MicroARNs/administración & dosificación , MicroARNs/biosíntesis , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/terapia , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/terapia , Estenosis Carotídea/metabolismo , Estenosis Carotídea/patología , Estenosis Carotídea/terapia , Células Cultivadas , Estudios de Cohortes , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Captura por Microdisección con Láser/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/análisis , Placa Aterosclerótica/patología , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/prevención & control
15.
Diabetes ; 65(10): 2888-99, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27659228

RESUMEN

Type 2 diabetes and cardiovascular disease are complex disorders involving metabolic and inflammatory mechanisms. Here we investigated whether sCD93, a group XIV c-type lectin of the endosialin family, plays a role in metabolic dysregulation or carotid intima-media thickness (IMT). Although no association was observed between sCD93 and IMT, sCD93 levels were significantly lower in subjects with type 2 diabetes (n = 901, mean ± SD 156.6 ± 40.0 ng/mL) compared with subjects without diabetes (n = 2,470, 164.1 ± 44.8 ng/mL, P < 0.0001). Genetic variants associated with diabetes risk (DIAGRAM Consortium) did not influence sCD93 levels (individually or combined in a single nucleotide polymorphism score). In a prospective cohort, lower sCD93 levels preceded the development of diabetes. Consistent with this, a cd93-deficient mouse model (in addition to apoe deficiency) demonstrated no difference in atherosclerotic lesion development compared with apoe(-/-) cd93-sufficient littermates. However, cd93-deficient mice showed impaired glucose clearance and insulin sensitivity (compared with littermate controls) after eating a high-fat diet. The expression of cd93 was observed in pancreatic islets, and leaky vessels were apparent in cd93-deficient pancreases. We further demonstrated that stress-induced release of sCD93 is impaired by hyperglycemia. Therefore, we propose CD93 as an important component in glucometabolic regulation.


Asunto(s)
Grosor Intima-Media Carotídeo , Glicoproteínas de Membrana/metabolismo , Receptores de Complemento/metabolismo , Animales , Apolipoproteínas E , Aterosclerosis/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliales/metabolismo , Femenino , Genotipo , Humanos , Masculino , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Páncreas/metabolismo , Receptores de Complemento/deficiencia , Receptores de Complemento/genética
16.
Stem Cell Reports ; 6(4): 607-617, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27052314

RESUMEN

The intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs) has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN)-based substrata in combination with stimulation of the canonical Wnt/ß-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.5. The majority of cells stained positive for PDGFR-α, ISL1, and NKX2.5, and subpopulations also expressed the progenitor markers TBX18, KDR, c-KIT, and SSEA-1. Upon culture of the cardiac MSCs in differentiation media and on relevant LNs, portions of the cells differentiated into spontaneously beating cardiomyocytes, and endothelial and smooth muscle-like cells. Our protocol for large-scale culture of human fetal cardiac MSCs enables future exploration of the regenerative functions of these cells in the context of myocardial injury in vitro and in vivo.


Asunto(s)
Proliferación Celular/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/genética , Sistema Cardiovascular/citología , Diferenciación Celular/genética , Células Cultivadas , Corazón Fetal/citología , Perfilación de la Expresión Génica/métodos , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Humanos , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Laminina/metabolismo , Células Madre Mesenquimatosas/citología , Microscopía Fluorescente , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , beta Catenina/metabolismo
17.
Oncotarget ; 7(26): 39486-39496, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27129145

RESUMEN

Heparanase is an endo-glucuronidase that specifically cleaves heparan sulfate (HS) and heparin polysaccharides. The enzyme is expressed at low levels in normal tissues, but is often upregulated under pathological conditions such as cancer and inflammation. Normal human platelets express exceptionally high levels of heparanase, but the functional consequences of this feature remain unknown. We investigated functional roles of heparanase by comparing the properties of platelets expressing high (Hpa-tg) or low (Ctr) levels of heparanase. Upon activation, Hpa-tg platelets exhibited a much stronger adhesion activity as compared to Ctr platelets, likely contributing to a higher thrombotic activity in a carotid thrombosis model. Furthermore, we found concomitant upregulated expression of both heparanase and CD62P (P-selectin) upon activation of mouse and human platelets. As platelets play important roles in tumor metastasis, these findings indicate contribution of the platelet heparanase to hyper-thrombotic conditions often seen in patients with metastatic cancer.


Asunto(s)
Regulación de la Expresión Génica , Glucuronidasa/metabolismo , Adhesividad Plaquetaria , Animales , Plaquetas/citología , Plaquetas/metabolismo , Arterias Carótidas/patología , Separación Celular , Cloruros/química , Cruzamientos Genéticos , Eritrocitos/metabolismo , Femenino , Compuestos Férricos/química , Citometría de Flujo , Glicosaminoglicanos/química , Heparitina Sulfato , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Selectina-P/metabolismo , Activación Plaquetaria , Selenoproteína P/metabolismo , Trombosis , Regulación hacia Arriba
18.
PLoS One ; 10(3): e0120176, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25763592

RESUMEN

Generation of new cardiomyocytes is critical for cardiac repair following myocardial injury, but which kind of stimuli is most important for cardiomyocyte regeneration is still unclear. Here we explore if apoptotic stimuli, manifested through caspase activation, influences cardiac progenitor up-regulation and cardiomyocyte differentiation. Using mouse embryonic stem cells as a cellular model, we show that sublethal activation of caspases increases the yield of cardiomyocytes while concurrently promoting the proliferation and differentiation of c-Kit+/α-actininlow cardiac progenitor cells. A broad-spectrum caspase inhibitor blocked these effects. In addition, the caspase inhibitor reversed the mRNA expression of genes expressed in cardiomyocytes and their precursors. Our study demonstrates that sublethal caspase-activation has an important role in cardiomyocyte differentiation and may have significant implications for promoting cardiac regeneration after myocardial injury involving exogenous or endogenous cell sources.


Asunto(s)
Caspasa 3/metabolismo , Caspasa 9/metabolismo , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Miocitos Cardíacos/metabolismo , Actinina/metabolismo , Animales , Apoptosis , Línea Celular , Membrana Celular/metabolismo , Ratones , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo
19.
Stem Cells Transl Med ; 3(12): 1484-94, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25313200

RESUMEN

Multipotent mesenchymal stromal cell (MSC) therapy and costimulation blockade are two immunomodulatory strategies being developed concomitantly for the treatment of immunological diseases. Both of these strategies have the capacity to inhibit immune responses and induce regulatory T cells; however, their ability to synergize remains largely unexplored. In order to study this, MSCs from C57BL/6 (H2b) mice were infused together with fully major histocompatibility complex-mismatched Balb/c (H2d) allogeneic islets into the portal vein of diabetic C57BL/6 (H2b) mice, which were subsequently treated with costimulation blockade for the first 10 days after transplantation. Mice receiving both recipient-type MSCs, CTLA4Ig, and anti-CD40L demonstrated indefinite graft acceptance, just as did most of the recipients receiving MSCs and CTLA4Ig. Recipients of MSCs only rejected their grafts, and fewer than one half of the recipients treated with costimulation blockade alone achieved permanent engraftment. The livers of the recipients treated with MSCs plus costimulation blockade contained large numbers of islets surrounded by Foxp3+ regulatory T cells. These recipients showed reduced antidonor IgG levels and a glucose tolerance similar to that of naïve nondiabetic mice. Intrahepatic lymphocytes and splenocytes from these recipients displayed reduced proliferation and interferon-γ production when re-exposed to donor antigen. MSCs in the presence of costimulation blockade prevented dendritic cell maturation, inhibited T cell proliferation, increased Foxp3+ regulatory T cell numbers, and increased indoleamine 2,3-dioxygenase activity. These results indicate that MSC infusion and costimulation blockade have complementary immune-modulating effects that can be used for a broad number of applications in transplantation, autoimmunity, and regenerative medicine.


Asunto(s)
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/inmunología , Células Madre Multipotentes/inmunología , Linfocitos T Reguladores/inmunología , Aloinjertos , Animales , Proliferación Celular , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/terapia , Factores de Transcripción Forkhead/inmunología , Inmunoglobulina G/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/trasplante , Interferón gamma/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Linfocitos T Reguladores/patología
20.
Arterioscler Thromb Vasc Biol ; 33(10): 2432-43, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23908247

RESUMEN

OBJECTIVE: Carotid plaque instability is a major cause of ischemic stroke, but detailed knowledge about underlying molecular pathways is still lacking. Here, we evaluated large-scale transcriptomic and protein expression profiling in a biobank of carotid endarterectomies followed by characterization of identified candidates, as a platform for discovery of novel proteins differentially regulated in unstable carotid lesions. APPROACH AND RESULTS: Genes highly upregulated in symptomatic versus asymptomatic plaques were selected from Affymetrix microarray analyses (n=127 plaques), and tissue microarrays constructed from 34 lesions were assayed for 21 corresponding proteins by immunohistochemistry. Quantification of stainings demonstrated differential expression of CD36, CD137, and DOCK7 (P<0.05) in unstable versus stable lesions and the most significant upregulation of a proprotein convertase, PCSK6 (P<0.0001). Increased expression of PCSK6 in symptomatic lesions was verified by quantitative real-time polymerase chain reaction (n=233), and the protein was localized to smooth muscle α-actin positive cells and extracellular matrix of the fibrous cap by immunohistochemistry. PCSK6 expression positively correlated to genes associated with inflammation, matrix degradation, and mitogens in microarrays. Stimulation of human carotid smooth muscle cells in vitro with cytokines caused rapid induction of PCSK6 mRNA. CONCLUSIONS: Using a combination of transcriptomic and tissue microarray profiling, we demonstrate a novel approach to identify proteins differentially expressed in unstable carotid atherosclerosis. The proprotein convertase PCSK6 was detected at increased levels in the fibrous cap of symptomatic carotid plaques, possibly associated with key processes in plaque rupture such as inflammation and extracellular matrix remodeling. Further studies are needed to clarify the role of PCSK6 in atherosclerosis.


Asunto(s)
Estenosis Carotídea/enzimología , Estenosis Carotídea/genética , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos , Proproteína Convertasas/genética , Proproteína Convertasas/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Análisis de Matrices Tisulares , Enfermedades Asintomáticas , Estenosis Carotídea/inmunología , Estenosis Carotídea/patología , Células Cultivadas , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Fibrosis , Humanos , Inmunohistoquímica , Mediadores de Inflamación/metabolismo , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/inmunología , Miocitos del Músculo Liso/enzimología , Miocitos del Músculo Liso/inmunología , Placa Aterosclerótica , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rotura Espontánea , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...