Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 142, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924828

RESUMEN

The development of reliable and cost-efficient methods to assess the toxicity of nanomaterials (NMs) is critical for the proper identification of their impact on human health and for ensuring a safe progress of nanotechnology. In this study, we investigated the reliability and applicability of label-free impedance flow cytometry (IFC) for in vitro nanotoxicity screening, which avoids time-consuming labelling steps and minimizes possible NM-induced interferences. U937 human lymphoma cells were exposed for 24 h to eight different nanomaterials at five concentrations (2, 10, 20, 50, and 100 µg/mL). The NMs' effect on viability was measured using IFC and the results were compared to those obtained by trypan blue (TB) dye exclusion and conventional flow cytometry (FC). To discriminate viable from necrotic cells, the IFC measurement settings regarding signal trigger level and frequency, as well as the buffer composition, were optimised. A clear discrimination between viable and necrotic cells was obtained at 6 MHz in a sucrose-based measurement buffer. Nanomaterial-induced interferences were not detected for IFC. The IFC and TB assay results were in accordance for all NMs. The IFC was found to be robust, reliable and less prone to interferences due to the advantage of being label-free.


Asunto(s)
Citometría de Flujo , Nanotecnología/métodos , Pruebas de Toxicidad/métodos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Impedancia Eléctrica , Humanos
2.
Int J Mol Sci ; 19(11)2018 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-30404169

RESUMEN

The evaluation of the biological effects of endoprosthetic wear particles on cells in vitro relies on a variety of test assays. However, most of these methods are susceptible to particle-induced interferences; therefore, label-free testing approaches emerge as more reliable alternatives. In this study, impedance-based real-time monitoring of cellular viability and metabolic activity were performed following exposure to metallic and ceramic wear particles. Moreover, label-free imaging of particle-exposed cells was done by high-resolution darkfield microscopy (HR-ODM) and field emission scanning electron microscopy (FESEM). The isolated human fibroblasts were exposed to CoCr28Mo6 and alumina matrix composite (AMC) ceramic particles. HR-ODM and FESEM revealed ingested particles. For impedance measurements, cells were seeded on gold-plated microelectrodes. Cellular behavior was monitored over a period of 48 h. CoCr28Mo6 and AMC particle exposure affected cell viability in a concentration-dependent manner, i.e., 0.01 mg/mL particle solutions led to small changes in cell viability, while 0.05 mg/mL resulted in a significant reduction of viability. The effects were more pronounced after exposure to CoCr28Mo6 particles. The results were in line with light and darkfield microcopy observations indicating that the chosen methods are valuable tools to assess cytotoxicity and cellular behavior following exposure to endoprosthetic wear particles.


Asunto(s)
Materiales Biocompatibles , Técnicas de Cultivo de Célula , Ensayo de Materiales , Materiales Biocompatibles/química , Materiales Biocompatibles/toxicidad , Biomarcadores , Supervivencia Celular , Fibroblastos , Expresión Génica , Humanos , Microscopía , Osteólisis/genética , Tamaño de la Partícula
3.
J Biomed Mater Res A ; 106(6): 1697-1707, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29451353

RESUMEN

Scaffolds functionalized with nanodiamond particles (nDP) hold great promise with regard to bone tissue formation in animal models. Degradation of the scaffolds over time may leave nDP within the tissues, raising concerns about possible long-term unwanted effects. Human SaOS-2 osteoblast-like cells and U937 monoblastoid cells were exposed to five different concentrations (0.002-2 mg/L) of nDP (size range: 2.36-4.42 nm) for 24 h. Cell viability was assessed by impedance-based methods. The differential expression of stress and toxicity-related genes was evaluated by polymerase chain reaction (PCR) super-array, while the expression of selected inflammatory and cell death markers was determined by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Furthermore, the expression of osteogenic genes by SaOS-2 cells, alkaline phosphatase activity and the extracellular calcium nodule deposition in response to nDP were determined in vitro. Cells responded differently to higher nDP concentrations (≥0.02 mg/L), that is, no loss of viability for SaOS-2 cells and significantly reduced viability for U937 cells. Gene expression showed significant upregulation of several cell death and inflammatory markers, among other toxicity reporter genes, indicating inflammatory and cytotoxic responses in U937 cells. Nanodiamond particles improved the osteogenicity of osteoblast-like cells with no evident cytotoxicity. However, concentration-dependent cytotoxic and inflammatory responses were seen in the U937 cells, negatively affecting osteogenicity in co-cultures. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1697-1707, 2018.


Asunto(s)
Materiales Biocompatibles/química , Nanodiamantes/química , Osteoblastos/citología , Osteogénesis , Andamios del Tejido/química , Materiales Biocompatibles/toxicidad , Línea Celular , Supervivencia Celular , Humanos , Nanodiamantes/toxicidad , Ingeniería de Tejidos , Andamios del Tejido/efectos adversos
4.
Artículo en Inglés | MEDLINE | ID: mdl-27273980

RESUMEN

With the growing numbers of nanomaterials (NMs), there is a great demand for rapid and reliable ways of testing NM safety-preferably using in vitro approaches, to avoid the ethical dilemmas associated with animal research. Data are needed for developing intelligent testing strategies for risk assessment of NMs, based on grouping and read-across approaches. The adoption of high throughput screening (HTS) and high content analysis (HCA) for NM toxicity testing allows the testing of numerous materials at different concentrations and on different types of cells, reduces the effect of inter-experimental variation, and makes substantial savings in time and cost. HTS/HCA approaches facilitate the classification of key biological indicators of NM-cell interactions. Validation of in vitro HTS tests is required, taking account of relevance to in vivo results. HTS/HCA approaches are needed to assess dose- and time-dependent toxicity, allowing prediction of in vivo adverse effects. Several HTS/HCA methods are being validated and applied for NM testing in the FP7 project NANoREG, including Label-free cellular screening of NM uptake, HCA, High throughput flow cytometry, Impedance-based monitoring, Multiplex analysis of secreted products, and genotoxicity methods-namely High throughput comet assay, High throughput in vitro micronucleus assay, and γH2AX assay. There are several technical challenges with HTS/HCA for NM testing, as toxicity screening needs to be coupled with characterization of NMs in exposure medium prior to the test; possible interference of NMs with HTS/HCA techniques is another concern. Advantages and challenges of HTS/HCA approaches in NM safety are discussed. WIREs Nanomed Nanobiotechnol 2017, 9:e1413. doi: 10.1002/wnan.1413 For further resources related to this article, please visit the WIREs website.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Nanoestructuras/toxicidad , Pruebas de Toxicidad/métodos , Animales , Línea Celular , Técnicas Citológicas , Humanos , Espacio Intracelular/química , Espacio Intracelular/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA