Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
Environ Sci Pollut Res Int ; 31(12): 18188-18199, 2024 Mar.
Article En | MEDLINE | ID: mdl-36952170

Modification of photocatalysts to improve their adsorption and photocatalytic activity in the oxidative desulfurization of liquid fuels has been reported by many investigators. In this study, Pt-decorated carbon-doped TiO2 nanoparticles were synthesized by hydrothermal and photo-deposition techniques and were subsequently used in photocatalytic oxidative desulfurization of dibenzothiophene (DBT) in n-heptane as a simulated liquid fuel with methanol as the extracting solvent. Carbon-doped TiO2 was first synthesized by a simple self-doping method. Pt was then loaded by a photo-deposition technique. The synthesized photocatalysts (labeled as YPt-CT where Y is percent Pt loading) were characterized by of X-ray diffraction (XRD), photoluminescence (PL), field emission scanning electron microscopy (FESEM), N2-physisorption, UV-Vis diffusive reflectance spectra (UV-Vis DRS), transmission electron microscopy (TEM), Fourier transform infrared spectra (FTIR), and nitrogen sorption measurements. The removal efficiency of DBT was 98% in the presence of 2 g/l of 0.5Pt-CT catalyst under visible-light irradiation (λ > 400 nm), ambient pressure, and reaction temperature of 40°C.


Carbon , Nanoparticles , Light , Microscopy, Electron, Transmission , Oxidative Stress , Titanium , Catalysis
...