Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(8): 110396, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39156647

RESUMEN

Livestock guarding dogs (LGDs) have been used to protect livestock for millennia. While previous works suggested a single origin of modern LGDs, the degree and source of shared ancestry have not been tested. To address this, we generated genome-wide SNP data from 304 LGDs and combined it with public genomic data from 2,183 modern and 22 ancient dogs. Our findings reveal shared ancestry and extensive gene flow among modern LGD breeds which we attribute to historical livestock migrations. Additionally, admixture between LGDs and free-ranging dogs argues against reproductive isolation as a core mechanism for maintaining the specialized skills of LGDs. Finally, we identify two lineages within modern LGDs and uncover multiple ancestries tracing back to distinct Eurasian ancient dogs, concordant with the absence of a single ancestor. Overall, our work explores the complex evolutionary history of LGDs, offering valuable insights into how human and livestock co-migrations shaped this functional group.

2.
Cancers (Basel) ; 16(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39001544

RESUMEN

Rare, inherited variants in DNA damage repair (DDR) genes have a recognised role in prostate cancer (PrCa) susceptibility. In addition, these genes are therapeutically targetable. While rare variants are informing clinical management in other common cancers, defining the rare disease-associated variants in PrCa has been challenging. Here, whole-genome and -exome sequencing data from two independent, high-risk Australian and North American familial PrCa datasets were interrogated for novel DDR risk variants. Rare DDR gene variants (predicted to be damaging and present in two or more family members) were identified and subsequently genotyped in 1963 individuals (700 familial and 459 sporadic PrCa cases, 482 unaffected relatives, and 322 screened controls), and association analyses accounting for relatedness (MQLS) undertaken. In the combined datasets, rare ERCC3 (rs145201970, p = 2.57 × 10-4) and BRIP1 (rs4988345, p = 0.025) variants were significantly associated with PrCa risk. A PARP2 (rs200603922, p = 0.028) variant in the Australian dataset and a MUTYH (rs36053993, p = 0.031) variant in the North American dataset were also associated with risk. Evaluation of clinicopathological characteristics provided no evidence for a younger age or higher-grade disease at diagnosis in variant carriers, which should be taken into consideration when determining genetic screening eligibility criteria for targeted, gene-based treatments in the future. This study adds valuable knowledge to our understanding of PrCa-associated DDR genes, which will underpin effective clinical screening and treatment strategies.

3.
Aging (Albany NY) ; 16(13): 10724-10748, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38985449

RESUMEN

Chronological age reveals the number of years an individual has lived since birth. By contrast, biological age varies between individuals of the same chronological age at a rate reflective of physiological decline. Differing rates of physiological decline are related to longevity and result from genetics, environment, behavior, and disease. The creation of methylation biological age predictors is a long-standing challenge in aging research due to the lack of individual pre-mortem longevity data. The consistent differences in longevity between domestic dog breeds enable the construction of biological age estimators which can, in turn, be contrasted with methylation measurements to elucidate mechanisms of biological aging. We draw on three flagship methylation studies using distinct measurement platforms and tissues to assess the feasibility of creating biological age methylation clocks in the dog. We expand epigenetic clock building strategies to accommodate phylogenetic relationships between individuals, thus controlling for the use of breed standard metrics. We observe that biological age methylation clocks are affected by population stratification and require heavy parameterization to achieve effective predictions. Finally, we observe that methylation-related markers reflecting biological age signals are rare and do not colocalize between datasets.


Asunto(s)
Envejecimiento , Metilación de ADN , Longevidad , Animales , Perros , Envejecimiento/genética , Longevidad/genética , Epigénesis Genética
4.
Genome Res ; 34(6): 811-821, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38955465

RESUMEN

Recent advances in genomics, coupled with a unique population structure and remarkable levels of variation, have propelled the domestic dog to new levels as a system for understanding fundamental principles in mammalian biology. Central to this advance are more than 350 recognized breeds, each a closed population that has undergone selection for unique features. Genetic variation in the domestic dog is particularly well characterized compared with other domestic mammals, with almost 3000 high-coverage genomes publicly available. Importantly, as the number of sequenced genomes increases, new avenues for analysis are becoming available. Herein, we discuss recent discoveries in canine genomics regarding behavior, morphology, and disease susceptibility. We explore the limitations of current data sets for variant interpretation, tradeoffs between sequencing strategies, and the burgeoning role of long-read genomes for capturing structural variants. In addition, we consider how large-scale collections of whole-genome sequence data drive rare variant discovery and assess the geographic distribution of canine diversity, which identifies Asia as a major source of missing variation. Finally, we review recent comparative genomic analyses that will facilitate annotation of the noncoding genome in dogs.


Asunto(s)
Genoma , Genómica , Perros/genética , Animales , Genómica/métodos , Variación Genética , Secuenciación Completa del Genoma/métodos
5.
bioRxiv ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38903121

RESUMEN

The multi-millenia long history between dogs and humans has placed them at the forefront of archeological and genomic research. Despite ongoing efforts including the analysis of ancient dog and wolf genomes, many questions remain regarding their geographic and temporal origins, and the microevolutionary processes that led to the diversity of breeds today. Although ancient genomes provide valuable information, their use is hindered by low depth of coverage and post-mortem damage, which inhibits confident genotype calling. In the present study, we assess how genotype imputation of ancient dog and wolf genomes, utilising a large reference panel, can improve the resolution provided by ancient datasets. Imputation accuracy was evaluated by down-sampling high coverage dog and wolf genomes to 0.05-2x coverage and comparing concordance between imputed and high coverage genotypes. We measured the impact of imputation on principal component analyses and runs of homozygosity. Our findings show high (R2>0.9) imputation accuracy for dogs with coverage as low as 0.5x and for wolves as low as 1.0x. We then imputed a dataset of 90 ancient dog and wolf genomes, to assess changes in inbreeding during the last 10,000 years of dog evolution. Ancient dog and wolf populations generally exhibited lower inbreeding levels than present-day individuals. Interestingly, regions with low ROH density maintained across ancient and present-day samples were significantly associated with genes related to olfaction and immune response. Our study indicates that imputing ancient canine genomes is a viable strategy that allows for the use of analytical methods previously limited to high-quality genetic data.

6.
NPJ Precis Oncol ; 8(1): 112, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778091

RESUMEN

Naturally occurring canine invasive urinary carcinoma (iUC) closely resembles human muscle invasive bladder cancer in terms of histopathology, metastases, response to therapy, and low survival rate. The heterogeneous nature of the disease has led to the association of large numbers of risk loci in humans, however most are of small effect. There exists a need for new and accurate animal models of invasive bladder cancer. In dogs, distinct breeds show markedly different rates of iUC, thus presenting an opportunity to identify additional risk factors and overcome the locus heterogeneity encountered in human mapping studies. In the association study presented here, inclusive of 100 Shetland sheepdogs and 58 dogs of other breeds, we identify a homozygous protein altering point mutation within the NIPAL1 gene which increases risk by eight-fold (OR = 8.42, CI = 3.12-22.71), accounting for nearly 30% of iUC risk in the Shetland sheepdog. Inclusion of six additional loci accounts for most of the disease risk in the breed and explains nearly 75% of the phenotypes in this study. When combined with sequence data from tumors, we show that variation in the MAPK signaling pathway is an overarching cause of iUC susceptibility in dogs.

7.
Genes (Basel) ; 15(1)2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38255002

RESUMEN

Idiopathic epilepsy (IE) has been known to be inherited in the Belgian Tervuren for many decades. Risk genotypes for IE in this breed have recently been identified on Canis familiaris chromosomes (CFA) 14 and 37. In the current study, the allele frequencies of these loci were analyzed to determine whether dog breeders had employed a purposeful selection against IE, leading to a reduction in risk-associated allele frequency within the breed over time. The allele frequencies of two generational groupings of Belgian Tervuren with and without IE were compared. Allele frequencies for risk-associated alleles on CFA14 were unchanged between 1985 and 2015, whereas those on CFA37 increased during that time in the control population (p < 0.05). In contrast, dogs with IE showed a decrease (p < 0.05) in the IE risk-associated allele frequency at the CFA37 locus. Seizure prevalence in the Belgian Tervuren appears to be increasing. These results suggest that, despite awareness that IE is inherited, selection against IE has not been successful.


Asunto(s)
Epilepsia , Animales , Perros , Alelos , Bélgica/epidemiología , Convulsiones , Frecuencia de los Genes
8.
Bladder Cancer ; 7(3): 317-333, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-38993617

RESUMEN

BACKGROUND: Improved therapies are needed for patients with invasive urothelial carcinoma (InvUC). Tailoring treatment to molecular subtypes holds promise, but requires further study, including studies in pre-clinical animal models. Naturally-occurring canine InvUC harbors luminal and basal subtypes, mimicking those observed in humans, and could offer a relevant model for the disease in people. OBJECTIVE: To further validate the canine InvUC model, clinical and tumor characteristics associated with luminal and basal subtypes in dogs were determined, with comparison to findings from humans. METHODS: RNA sequencing (RNA-seq) analyses were performed on 56 canine InvUC tissues and bladder mucosa from four normal dogs. Data were aligned to CanFam 3.1, and differentially expressed genes identified. Data were interrogated with panels of genes defining luminal and basal subtypes, immune signatures, and other tumor features. Subject and tumor characteristics, and outcome data were obtained from medical records. RESULTS: Twenty-nine tumors were classified as luminal and 27 tumors as basal subtype. Basal tumors were strongly associated with immune infiltration (OR 52.22, 95%CI 4.68-582.38, P = 0.001) and cancer progression signatures in RNA-seq analyses, more advanced clinical stage, and earlier onset of distant metastases in exploratory analyses (P = 0.0113). Luminal tumors were strongly associated with breeds at high risk for InvUC (OR 0.06, 95%CI 0.01 -0.37, P = 0.002), non-immune infiltrative signatures, and less advanced clinical stage. CONCLUSIONS: Dogs with InvUC could provide a valuable model for testing new treatment strategies in the context of molecular subtype and immune status, and the search for germline variants impacting InvUC onset and subtype.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA