Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 76
2.
Mucosal Immunol ; 17(2): 201-210, 2024 Apr.
Article En | MEDLINE | ID: mdl-38278415

Our understanding of the quality of cellular and humoral immunity conferred by COVID-19 vaccination alone versus vaccination plus SARS-CoV-2 breakthrough (BT) infection remains incomplete. While the current (2023) SARS-CoV-2 immune landscape of Canadians is complex, in late 2021 most Canadians had either just received a third dose of COVID-19 vaccine, or had received their two-dose primary series and then experienced an Omicron BT. Herein we took advantage of this coincident timing to contrast cellular and humoral immunity conferred by three doses of vaccine versus two doses plus BT. Our results show thatBT infection induces cell-mediated immune responses to variants comparable to an intramuscular vaccine booster dose. In contrast, BT subjects had higher salivary immunoglobulin (Ig)G and IgA levels against the Omicron spike and enhanced reactivity to the ancestral spike for the IgA isotype, which also reacted with SARS-CoV-1. Serumneutralizing antibody levels against the ancestral strain and the variants were also higher after BT infection. Our results support the need for the development of intranasal vaccines that could emulate the enhanced mucosal and humoral immunity induced by Omicron BT without exposing individuals to the risks associated with SARS-CoV-2 infection.


COVID-19 , North American People , SARS-CoV-2 , Humans , COVID-19 Vaccines , Breakthrough Infections , Immunity, Humoral , Canada , Immunoglobulin A, Secretory , Immunoglobulin G , Antibodies, Viral , Antibodies, Neutralizing
3.
bioRxiv ; 2023 Dec 28.
Article En | MEDLINE | ID: mdl-38234829

Single cell RNA sequencing (scRNA-seq) is revolutionizing the study of complex biological systems. However, most sequencing studies overlook the contribution of transposable element (TE) expression to the transcriptome. In both scRNA-seq and bulk tissue RNA sequencing (RNA-seq), quantification of TE expression is challenging due to repetitive sequence content and poorly characterized TE gene models. Here, we developed a tool and analysis pipeline for Single cell Transposable Element Locus Level Analysis of scRNA Sequencing (Stellarscope) that reassigns multi-mapped reads to specific genomic loci using an expectation-maximization algorithm. Using Stellarscope, we built an atlas of TE expression in human PBMCs. We found that locus-specific TEs delineate cell types and define new cell subsets not identified by standard mRNA expression profiles. Altogether, this study provides comprehensive insights into the influence of transposable elements in human biology.

4.
Sci Adv ; 8(3): eabj9815, 2022 Jan 21.
Article En | MEDLINE | ID: mdl-35044832

Safe and effective vaccines are needed to end the COVID-19 pandemic. Here, we report the preclinical development of a lipid nanoparticle­formulated SARS-CoV-2 mRNA vaccine, PTX-COVID19-B. PTX-COVID19-B was chosen among three candidates after the initial mouse vaccination results showed that it elicited the strongest neutralizing antibody response against SARS-CoV-2. Further tests in mice and hamsters indicated that PTX-COVID19-B induced robust humoral and cellular immune responses and completely protected the vaccinated animals from SARS-CoV-2 infection in the lung. Studies in hamsters also showed that PTX-COVID19-B protected the upper respiratory tract from SARS-CoV-2 infection. Mouse immune sera elicited by PTX-COVID19-B vaccination were able to neutralize SARS-CoV-2 variants of concern, including the Alpha, Beta, Gamma, and Delta lineages. No adverse effects were induced by PTX-COVID19-B in either mice or hamsters. Based on these results, PTX-COVID19-B was authorized by Health Canada to enter clinical trials in December 2020 with a phase 2 clinical trial ongoing.


COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , CD4 Lymphocyte Count , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19 Vaccines/adverse effects , Canada , Cell Line , Cricetinae , Drug Evaluation, Preclinical , Female , HEK293 Cells , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Liposomes/pharmacology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanoparticles , Spike Glycoprotein, Coronavirus/genetics , Th1 Cells/immunology
5.
J Immunol ; 208(2): 429-443, 2022 01 15.
Article En | MEDLINE | ID: mdl-34903642

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces T cell, B cell, and Ab responses that are detected for several months in recovered individuals. Whether this response resembles a typical respiratory viral infection is a matter of debate. In this study, we followed T cell and Ab responses in 24 mainly nonhospitalized human subjects who had recovered from PCR-confirmed SARS-CoV-2 infection at two time points (median of 45 and 145 d after symptom onset). Ab responses were detected in 95% of subjects, with a strong correlation between plasma and salivary anti-spike (anti-S) and anti-receptor binding domain IgG, as well as a correlation between circulating T follicular helper cells and the SARS-CoV-2-specific IgG response. T cell responses to SARS-CoV-2 peptides were determined using intracellular cytokine staining, activation markers, proliferation, and cytokine secretion. All study subjects had a T cell response to at least one SARS-CoV-2 Ag based on at least one T cell assay. CD4+ responses were largely of the Th1 phenotype, but with a lower ratio of IFN-γ- to IL-2-producing cells and a lower frequency of CD8+:CD4+ T cells than in influenza A virus (IAV)-specific memory responses within the same subjects. Analysis of secreted molecules also revealed a lower ratio of IFN-γ to IL-2 and an altered cytotoxic profile for SARS-CoV-2 S- and nucleocapsid-specific responses compared with IAV-specific responses. These data suggest that the memory T cell phenotype after a single infection with SARS-CoV-2 persists over time, with an altered cytokine and cytotoxicity profile compared with long-term memory to whole IAV within the same subjects.


Antibody Formation , COVID-19/immunology , Immunity, Cellular , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Th1 Cells/immunology , Adult , Aged , Female , Humans , Male , Middle Aged , Time Factors
7.
Nat Commun ; 12(1): 165, 2021 01 08.
Article En | MEDLINE | ID: mdl-33420062

The Intact Proviral DNA Assay (IPDA) was developed to address the critical need for a scalable method for intact HIV-1 reservoir quantification. This droplet digital PCR-based assay simultaneously targets two HIV-1 regions to distinguish genomically intact proviruses against a large background of defective ones, and its application has yielded insights into HIV-1 persistence. Reports of assay failures however, attributed to HIV-1 polymorphism, have recently emerged. Here, we describe a diverse North American cohort of people with HIV-1 subtype B, where the IPDA yielded a failure rate of 28% due to viral polymorphism. We further demonstrate that within-host HIV-1 diversity can lead the IPDA to underestimate intact reservoir size, and provide examples of how this phenomenon could lead to erroneous interpretation of clinical trial data. While the IPDA represents a major methodological advance, HIV-1 diversity should be addressed before its widespread adoption as a principal readout in HIV-1 remission trials.


Biodiversity , DNA, Viral/analysis , HIV-1/genetics , Proviruses/genetics , Base Sequence , CD4-Positive T-Lymphocytes/virology , DNA, Viral/genetics , HIV Infections/virology , Humans , Phylogeny , Polymerase Chain Reaction/methods
8.
J Immunol ; 206(1): 37-50, 2021 01 01.
Article En | MEDLINE | ID: mdl-33208459

There is a pressing need for an in-depth understanding of immunity to SARS-CoV-2. In this study, we investigated human T cell recall responses to fully glycosylated spike trimer, recombinant N protein, as well as to S, N, M, and E peptide pools in the early convalescent phase and compared them with influenza-specific memory responses from the same donors. All subjects showed SARS-CoV-2-specific T cell responses to at least one Ag. Both SARS-CoV-2-specific and influenza-specific CD4+ T cell responses were predominantly of the central memory phenotype; however SARS-CoV-2-specific CD4+ T cells exhibited a lower IFN-γ to TNF ratio compared with influenza-specific memory responses from the same donors, independent of disease severity. SARS-CoV-2-specific T cells were less multifunctional than influenza-specific T cells, particularly in severe cases, potentially suggesting exhaustion. Most SARS-CoV-2-convalescent subjects also produced IFN-γ in response to seasonal OC43 S protein. We observed granzyme B+/IFN-γ+, CD4+, and CD8+ proliferative responses to peptide pools in most individuals, with CD4+ T cell responses predominating over CD8+ T cell responses. Peripheral T follicular helper (pTfh) responses to S or N strongly correlated with serum neutralization assays as well as receptor binding domain-specific IgA; however, the frequency of pTfh responses to SARS-CoV-2 was lower than the frequency of pTfh responses to influenza virus. Overall, T cell responses to SARS-CoV-2 are robust; however, CD4+ Th1 responses predominate over CD8+ T cell responses, have a more inflammatory profile, and have a weaker pTfh response than the response to influenza virus within the same donors, potentially contributing to COVID-19 disease.


Antigens, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , Inflammation/immunology , Orthomyxoviridae/immunology , SARS-CoV-2/immunology , Adult , Aged , Female , Humans , Male , Middle Aged
9.
Sci Rep ; 9(1): 18656, 2019 Dec 04.
Article En | MEDLINE | ID: mdl-31796843

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
PLoS Comput Biol ; 15(9): e1006453, 2019 09.
Article En | MEDLINE | ID: mdl-31568525

Characterization of Human Endogenous Retrovirus (HERV) expression within the transcriptomic landscape using RNA-seq is complicated by uncertainty in fragment assignment because of sequence similarity. We present Telescope, a computational software tool that provides accurate estimation of transposable element expression (retrotranscriptome) resolved to specific genomic locations. Telescope directly addresses uncertainty in fragment assignment by reassigning ambiguously mapped fragments to the most probable source transcript as determined within a Bayesian statistical model. We demonstrate the utility of our approach through single locus analysis of HERV expression in 13 ENCODE cell types. When examined at this resolution, we find that the magnitude and breadth of the retrotranscriptome can be vastly different among cell types. Furthermore, our approach is robust to differences in sequencing technology and demonstrates that the retrotranscriptome has potential to be used for cell type identification. We compared our tool with other approaches for quantifying transposable element (TE) expression, and found that Telescope has the greatest resolution, as it estimates expression at specific TE insertions rather than at the TE subfamily level. Telescope performs highly accurate quantification of the retrotranscriptomic landscape in RNA-seq experiments, revealing a differential complexity in the transposable element biology of complex systems not previously observed. Telescope is available at https://github.com/mlbendall/telescope.


DNA Transposable Elements/genetics , Endogenous Retroviruses/genetics , Gene Expression Profiling/methods , Software , Transcriptome/genetics , Cell Line , Computational Biology , Cytological Techniques , Humans , Organ Specificity , Sequence Analysis, RNA/methods
11.
J Clin Invest ; 129(2): 875-886, 2019 02 01.
Article En | MEDLINE | ID: mdl-30511963

BACKGROUND: Varicella-zoster virus (VZV) is under consideration as a promising recombinant viral vector to deliver foreign antigens including HIV. However, new vectors have come under increased scrutiny, since trials with adenovirus serotype 5-vectored (Ad5-vectored) HIV vaccine demonstrated increased HIV risk in individuals with pre-immunity to the vector that was thought to be associated with mucosal immune activation (IA). Therefore, given the prospect of developing an HIV/VZV chimeric vaccine, it is particularly important to define the impact of VZV vaccination on IA. METHODS: Healthy VZV-seropositive Kenyan women (n = 44) were immunized with high-dose live attenuated VZV vaccine, and we assessed the expression on CD4+ T cells isolated from blood, cervix, and rectum of IA markers including CD38 and HLA-DR and of markers of cell migration and tissue retention, as well as the concentration of genital and intestinal cytokines. A delayed-start group (n = 22) was used to control for natural variations in these parameters. RESULTS: Although immunogenic, VZV vaccination did not result in significant difference in the frequency of cervical activated (HLA-DR+CD38+) CD4+ T cells (median 1.61%, IQR 0.93%-2.76%) at 12 weeks after vaccination when compared with baseline (median 1.58%, IQR 0.75%-3.04%), the primary outcome for this study. VZV vaccination also had no measurable effect on any of the IA parameters at 4, 8, and 12 weeks after vaccination. CONCLUSION: This study provides the first evidence to our knowledge about the effects of VZV vaccination on human mucosal IA status and supports further evaluation of VZV as a potential vector for an HIV vaccine. TRIAL REGISTRATION: ClinicalTrials.gov NCT02514018. FUNDING: Primary support from the Canadian Institutes for Health Research (CIHR). For other sources, see Acknowledgments.


AIDS Vaccines , CD4-Positive T-Lymphocytes/immunology , HIV-1/physiology , Herpesvirus 3, Human , Virus Activation , AIDS Vaccines/administration & dosage , AIDS Vaccines/immunology , Adult , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/virology , Female , Herpesvirus 3, Human/genetics , Herpesvirus 3, Human/immunology , Humans , Kenya , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Varicella Zoster Virus Infection/immunology , Varicella Zoster Virus Infection/pathology , Varicella Zoster Virus Infection/prevention & control , Virus Activation/drug effects , Virus Activation/immunology
12.
J Virol ; 92(19)2018 10 01.
Article En | MEDLINE | ID: mdl-29997203

Human immunodeficiency virus type 1 (HIV-1) infection often arises from a single transmitted/founder (TF) viral variant among a large pool of viruses in the quasispecies in the transmitting partner. TF variants are typically nondominant in blood and genital secretions, indicating that they have unique traits. The plasmacytoid dendritic cell (pDC) is the primary alpha interferon (IFN-α)-producing cell in response to viral infections and is rapidly recruited to the female genital tract upon exposure to HIV-1. The impact of pDCs on transmission is unknown. We investigated whether evasion of pDC responses is a trait of TF viruses. pDCs from healthy donors were stimulated in vitro with a panel of 20 HIV-1 variants, consisting of one TF variant and three nontransmitted (NT) variants each from five transmission-linked donor pairs, and secretion of IFN-α and tumor necrosis factor alpha (TNF-α) was measured by enzyme-linked immunosorbent assay (ELISA). No significant differences in cytokine secretion in response to TF and NT viruses were observed, despite a trend toward enhanced IFN-α and TNF-α production in response to TF viruses. NT viruses demonstrated polarization toward production of either IFN-α or TNF-α, indicating possible dysregulation. Also, for NT viruses, IFN-α secretion was associated with increased resistance of the virus to inactivation by IFN-α in vitro, suggesting in vivo evolution. Thus, TF viruses do not appear to preferentially subvert pDC activation compared to that with nontransmitted HIV-1 variants. pDCs may, however, contribute to the in vivo evolution of HIV-1.IMPORTANCE The plasmacytoid dendritic cell (pDC) is the first cell type recruited to the site of HIV-1 exposure; however, its contribution to the viral bottleneck in HIV-1 transmission has not been explored previously. We hypothesized that transmitted/founder viruses are able to avoid the pDC response. In this study, we used previously established donor pair-linked transmitted/founder and nontransmitted (or chronic) variants of HIV-1 to stimulate pDCs. Transmitted/founder HIV-1, instead of suppressing pDC responses, induced IFN-α and TNF-α secretion to levels comparable to those induced by viruses from the transmitting partner. We noted several unique traits of chronic viruses, including polarization between IFN-α and TNF-α production as well as a strong relationship between IFN-α secretion and the resistance of the virus to neutralization. These data rule out the possibility that TF viruses preferentially suppress pDCs in comparison to the pDC response to nontransmitted HIV variants. pDCs may, however, be important drivers of viral evolution in vivo.


Dendritic Cells/immunology , HIV Infections/transmission , HIV-1/immunology , Interferon-alpha/metabolism , Tumor Necrosis Factor-alpha/metabolism , Adult , Dendritic Cells/virology , Female , HIV Infections/immunology , HIV Infections/virology , HIV-1/pathogenicity , Host-Pathogen Interactions , Humans , Interferon-alpha/immunology , Male , Neutralization Tests , Primary Cell Culture , Tumor Necrosis Factor-alpha/immunology , Virion/immunology , Virion/pathogenicity
13.
J Infect Dis ; 218(8): 1210-1218, 2018 09 08.
Article En | MEDLINE | ID: mdl-29800309

Background: Attenuated varicella zoster virus (VZV) is a promising vector for recombinant vaccines. Because human immunodeficiencyvirus (HIV) vaccines are believed to require mucosal immunogenicity, we characterized mucosal VZV-specific humoral immunity following VZVOka vaccination. Methods: Adult Kenyan VZV-seropositive women (n = 44) received a single dose of the live zoster VZVOka vaccine. The anamnestic responses to the virus were followed longitudinally in both plasma and mucosal secretions using an in-house glycoprotein enzyme-linked immunosorbent assay and safety and reactogenicity monitored. VZV seroprevalence and baseline responses to the virus were also characterized in our cohorts (n = 288). Results: Besides boosting anti-VZV antibody responses systemically, vaccination also boosted anti-VZV immunity in the cervicovaginal mucosa with a 2.9-fold rise in immunoglobulin G (P < .0001) and 1.6-fold rise in immunoglobulin A (IgA) (P = .004) from the time before immunization and 4 weeks postvaccination. Baseline analysis demonstrated high avidity antibodies at the gastrointestinal and genital mucosa of VZV-seropositive women. Measurement of VZV-specific IgA in saliva is a sensitive tool for detecting prior VZV infection. Conclusions: VZVOka vaccine was safe and immunogenic in VZV-seropositive adult Kenyan women. We provided compelling evidence of VZV ability to induce genital mucosa immunity. Clinical Trials Registration: NCT02514018.


Antibodies, Viral/metabolism , Herpesvirus 3, Human/isolation & purification , Immunity, Humoral , Mucous Membrane/immunology , Vagina/immunology , Varicella Zoster Virus Infection/prevention & control , Antibodies, Viral/blood , Female , Herpes Zoster Vaccine/immunology , Humans , Kenya/epidemiology , Vaccines, Attenuated , Varicella Zoster Virus Infection/epidemiology , Varicella Zoster Virus Infection/immunology
14.
PLoS One ; 13(2): e0192482, 2018.
Article En | MEDLINE | ID: mdl-29420608

Cell surface expression of α4ß7, α4ß1 and αEß7 integrins play a key role in T cell distribution. Understanding the contribution of integrins to the density and ratios of CD4+: CD4negT cell at the portals of entry for HIV is of fundamental importance for the advance of more effective HIV prevention strategies. We therefore set out to characterize and compare the expression of α4ß7, α4ß1 and αEß7 integrins on systemic, cervical and rectal CD4+ and CD4negT cells isolated from a cohort of healthy Kenyan women at low risk for sexually transmitted infections (STI) (n = 45). Here we show that blood and cervix were enriched in α4+ß1+CD4+T cells and α4+ß7hiCD4+T cells, whereas the rectum had an equal frequency of α4+ß7hiCD4+T cells and αE+ß7hiCD4+T cells. Most cervical and rectal αE+ß7hiCD4+T cells expressed CCR5 as well as CD69. Interestingly, αEß7 was the predominant integrin expressed by CD4negT cells in both mucosal sites, outnumbering αE+ß7hiCD4+T cells approximately 2-fold in the cervix and 7-fold in the rectum. The majority of αE+ß7hiCD4negT cells expressed CD69 at the mucosa. Taken together, our results show unique tissue-specific patterns of integrin expression. These results can help in guiding vaccine design and also the use of therapeutically targeting integrin adhesion as a means to preventing HIV.


CD4-Positive T-Lymphocytes/immunology , Cervix Uteri/immunology , HIV Infections/transmission , Integrins/physiology , Rectum/immunology , Cervix Uteri/metabolism , Female , Humans , Rectum/metabolism
15.
Sci Rep ; 8(1): 850, 2018 01 16.
Article En | MEDLINE | ID: mdl-29339801

The capacity of HIV-1 to develop resistance to current drugs calls for innovative strategies to control this infection. We aimed at developing novel inhibitors of HIV-1 replication by targeting viral RNA processing-a stage dependent on conserved host processes. We previously reported that digoxin is a potent inhibitor of this stage. Herein, we identify 12 other cardiac glycoside/aglycones or cardiotonic steroids (CSs) that impede HIV growth in HIV-infected T cells from clinical patients at IC50s (1.1-1.3 nM) that are 2-26 times below concentrations used in patients with heart conditions. We subsequently demonstrate that CSs inhibit HIV-1 gene expression in part through modulation of MEK1/2-ERK1/2 signaling via interaction with the Na+/K+-ATPase, independent of alterations in intracellular Ca2+. Supporting this hypothesis, depletion of the Na+/K+-ATPase or addition of a MEK1/2-ERK1/2 activator also impairs HIV-1 gene expression. Similar to digoxin, all CSs tested induce oversplicing of HIV-1 RNAs, reducing unspliced (Gag) and singly spliced RNAs (Env/p14-Tat) encoding essential HIV-1 structural/regulatory proteins. Furthermore, all CSs cause nuclear retention of genomic/unspliced RNAs, supporting viral RNA processing as the underlying mechanism for their disruption of HIV-1 replication. These findings call for further in vivo validation and supports the targeting of cellular processes to control HIV-1 infection.


Cardiac Glycosides/pharmacology , Gene Expression Regulation, Viral/drug effects , HIV-1/drug effects , Signal Transduction/drug effects , Cardiac Glycosides/chemistry , Digoxin/chemistry , Digoxin/pharmacology , HIV Infections/metabolism , HIV Infections/pathology , HIV-1/genetics , HIV-1/metabolism , HeLa Cells , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , RNA Interference , RNA, Small Interfering/metabolism , RNA, Viral/metabolism , Serine-Arginine Splicing Factors/metabolism , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Virus Replication/drug effects , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism
16.
JCI Insight ; 2(17)2017 09 07.
Article En | MEDLINE | ID: mdl-28878119

Eradication of the HIV-1 latent reservoir represents the current paradigm to developing a cure for AIDS. HIV-1 has evolved multiple mechanisms to evade CD8 T cell responses, including HIV-1 Nef-mediated downregulation of MHC-I from the surface of infected cells. Nef transcripts and protein are detectable in samples from aviremic donors, suggesting that Nef expression in latently HIV-1-infected CD4 T cells protects them from immune-mediated clearance. Here, we tested 4 small molecule inhibitors of HIV-1 Nef in an in vitro primary CD4 T cell latency model and measured the ability of autologous ex vivo or HIV-1 peptide-expanded CD8 T cells to recognize and kill latently infected cells as a function of inhibitor treatment. Nef inhibition enhanced cytokine secretion by autologous CD8 T cells against latently HIV-1-infected targets in an IFN-γ release assay. Additionally, CD8 T cell-mediated elimination of latently HIV-1-infected cells was significantly enhanced following Nef blockade, measured as a reduction in the frequency of infected cells and Gag protein in cultures following viral outgrowth assays. We demonstrate for the first time to our knowledge that Nef blockade, in combination with HIV-specific CD8 T cell expansion, might be a feasible strategy to target the HIV-1 latent reservoir that should be tested further in vivo.


Anti-HIV Agents/pharmacology , Gene Products, nef/antagonists & inhibitors , HIV-1/metabolism , Virus Latency , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cells, Cultured , Down-Regulation , Gene Products, nef/genetics , Gene Products, nef/metabolism , HIV-1/drug effects , Humans , Major Histocompatibility Complex/immunology
17.
J Virol ; 91(16)2017 08 15.
Article En | MEDLINE | ID: mdl-28592534

Immunotherapy with passive administration of broadly neutralizing HIV-1 envelope-specific antibodies (bnAbs) in the setting of established infection in vivo has yielded mixed results. The contribution of different antibodies toward the direct elimination of infected cells is poorly understood. In this study, we determined the ability of 12 well-characterized anti-HIV-1 neutralizing antibodies to recognize and eliminate primary CD4 T cells infected with HIV-1 belonging to clades A, B, C, and D, via antibody-dependent complement-mediated lysis (ADCML) and antibody-dependent cell-mediated cytotoxicity (ADCC), in vitro We further tested unique combinations of these antibodies to determine the optimal antibody cocktails to be tested in future clinical trials. We report that antibody binding to infected CD4 T cells is highly variable and correlates with ADCML and ADCC processes. Particularly, antibodies targeting the envelope glycan shield (2G12) and V1/V2 site (PG9, PG16, and PGT145) are best at recognizing HIV-1-infected CD4 T cells. However, only PG9 and PG16 and their combinations with other bnAbs sufficiently induced the elimination of HIV-1-infected CD4 T cells by ADCML, ADCC, or both. Notably, CD4 binding site antibodies VRC01, 3BNC117, and NIH45-46 G54W did not exhibit recognition of infected cells and were unable to induce their killing. Future trials geared toward the development of a cure for HIV/AIDS should incorporate V1/V2 antibodies for maximal clearance of infected cells. With the use of only primary immune cells, we conducted a comprehensive cross-clade physiological analysis to aid the direction of antibodies as therapeutics toward the development of a cure for HIV/AIDS.IMPORTANCE Several antibodies capable of neutralizing the majority of circulating HIV-1 strains have been identified to date and have been shown to prevent infection in animal models. However, the use of combinations of such broadly neutralizing antibodies (bnAbs) for the treatment and eradication of HIV-1 in infected humans remains uncertain. In this study, we tested the ability of bnAbs to directly recognize and eliminate primary human CD4 T cells infected with diverse HIV-1 strains representative of the global epidemic by antibody-dependent pathways. We also tested several combinations of bnAbs in our assays in order to maximize the clearance of infected cells. We show that the ability of bnAbs to identify and kill infected cells is highly variable and that only a few of them are able to exert this function. Our data will help guide the formulation of bnAbs to test in future human trials aimed at the development of a cure.


Antibodies, Neutralizing/immunology , Antibody-Dependent Cell Cytotoxicity , Complement System Proteins/immunology , Cross Reactions , HIV Antibodies/immunology , HIV-1/immunology , Humans
18.
JCI Insight ; 2(8)2017 Apr 20.
Article En | MEDLINE | ID: mdl-28422752

Humoral immunity is critical for viral control, but the identity and mechanisms regulating human antiviral B cells are unclear. Here, we characterized human B cells expressing T-bet and analyzed their dynamics during viral infections. T-bet+ B cells demonstrated an activated phenotype, a distinct transcriptional profile, and were enriched for expression of the antiviral immunoglobulin isotypes IgG1 and IgG3. T-bet+ B cells expanded following yellow fever virus and vaccinia virus vaccinations and also during early acute HIV infection. Viremic HIV-infected individuals maintained a large T-bet+ B cell population during chronic infection that was associated with increased serum and cell-associated IgG1 and IgG3 expression. The HIV gp140-specific B cell response was dominated by T-bet-expressing memory B cells, and we observed a concomitant biasing of gp140-specific serum immunoglobulin to the IgG1 isotype. These findings suggest that T-bet induction promotes antiviral immunoglobulin isotype switching and development of a distinct T-bet+ B cell subset that is maintained by viremia and coordinates the HIV Env-specific humoral response.

19.
J Immunol ; 198(8): 3181-3194, 2017 04 15.
Article En | MEDLINE | ID: mdl-28264968

In chronic diseases, such as HIV infection, plasmacytoid dendritic cells (pDCs) are rendered dysfunctional, as measured by their decreased capacity to produce IFN-α. In this study, we identified elevated levels of T cell Ig and mucin-domain containing molecule-3 (Tim-3)-expressing pDCs in the blood of HIV-infected donors. The frequency of Tim-3-expressing pDCs correlated inversely with CD4 T cell counts and positively with HIV viral loads. A lower frequency of pDCs expressing Tim-3 produced IFN-α or TNF-α in response to the TLR7 agonists imiquimod and Sendai virus and to the TLR9 agonist CpG. Thus, Tim-3 may serve as a biomarker of pDC dysfunction in HIV infection. The source and function of Tim-3 was investigated on enriched pDC populations from donors not infected with HIV. Tim-3 induction was achieved in response to viral and artificial stimuli, as well as exogenous IFN-α, and was PI3K dependent. Potent pDC-activating stimuli, such as CpG, imiquimod, and Sendai virus, induced the most Tim-3 expression and subsequent dysfunction. Small interfering RNA knockdown of Tim-3 increased IFN-α secretion in response to activation. Intracellular Tim-3, as measured by confocal microscopy, was dispersed throughout the cytoplasm prior to activation. Postactivation, Tim-3 accumulated at the plasma membrane and associated with disrupted TLR9 at the submembrane. Tim-3-expressing pDCs had reduced IRF7 levels. Furthermore, intracellular Tim-3 colocalized with p85 and IRF7 within LAMP1+ lysosomes, suggestive of a role in degradation. We conclude that Tim-3 is a biomarker of dysfunctional pDCs and may negatively regulate IFN-α, possibly through interference with TLR signaling and recruitment of IRF7 and p85 into lysosomes, enhancing their degradation.


Biomarkers/analysis , Dendritic Cells/immunology , HIV Infections/immunology , Hepatitis A Virus Cellular Receptor 2/immunology , Signal Transduction/immunology , Adult , Cell Separation , Dendritic Cells/metabolism , Female , HIV Infections/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Humans , Interferon Regulatory Factor-7/immunology , Interferon Regulatory Factor-7/metabolism , Lysosomes/immunology , Lysosomes/metabolism , Male , Microscopy, Confocal , Middle Aged , Toll-Like Receptor 9/immunology , Toll-Like Receptor 9/metabolism , Young Adult
20.
ACS Nano ; 11(3): 2428-2443, 2017 03 28.
Article En | MEDLINE | ID: mdl-28040885

A significant challenge to delivering therapeutic doses of nanoparticles to targeted disease sites is the fact that most nanoparticles become trapped in the liver. Liver-resident macrophages, or Kupffer cells, are key cells in the hepatic sequestration of nanoparticles. However, the precise role that the macrophage phenotype plays in nanoparticle uptake is unknown. Here, we show that the human macrophage phenotype modulates hard nanoparticle uptake. Using gold nanoparticles, we examined uptake by human monocyte-derived macrophages that had been driven to a "regulatory" M2 phenotype or an "inflammatory" M1 phenotype and found that M2-type macrophages preferentially take up nanoparticles, with a clear hierarchy among the subtypes (M2c > M2 > M2a > M2b > M1). We also found that stimuli such as LPS/IFN-γ rather than with more "regulatory" stimuli such as TGF-ß/IL-10 reduce per cell macrophage nanoparticle uptake by an average of 40%. Primary human Kupffer cells were found to display heterogeneous expression of M1 and M2 markers, and Kupffer cells expressing higher levels of M2 markers (CD163) take up significantly more nanoparticles than Kupffer cells expressing lower levels of surface CD163. Our results demonstrate that hepatic inflammatory microenvironments should be considered when studying liver sequestration of nanoparticles, and that modifying the hepatic microenvironment might offer a tool for enhancing or decreasing this sequestration. Our findings also suggest that models examining the nanoparticle/macrophage interaction should include studies with primary tissue macrophages.


Gold/metabolism , Liver/metabolism , Macrophages/metabolism , Metal Nanoparticles/chemistry , Gold/blood , Gold/chemistry , Humans , Liver/cytology , Macrophages/chemistry , Monocytes/chemistry , Monocytes/metabolism , Phenotype
...