Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Rep ; 34: 101484, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37197735

RESUMEN

Syringic acid (SACI) is an emerging nutraceutical and antioxidant used in modern Chinese medicine. It has potential neuroprotective, anti-hyperglycemic, and anti-angiogenic properties. Methyl cellosolve (MCEL) has been reported to induce tissue inflammation in the testis, kidney, liver, and lung. This study aimed to investigate the effect and probable mechanism of action of SACI on MCEL-induced hepatic and testicular inflammation in male rats. Compared to the control group, administration of MCEL to rats significantly increased the levels of IL-6, TNF-α, iNOS, COX-2, and NF-κB in the liver and testis. Additionally, the total mRNA expressions of JAK1 (in the liver only), STAT1, and SOCS1 were significantly increased in both the liver and testis, while testicular JAK1 total mRNA levels were significantly decreased. The expression of PIAS1 protein was significantly higher in the liver and testis. Treatments with SACI at 25 (except liver iNOS), 50, and 75 mg/kg significantly decreased the levels of IL-6, TNF-α, iNOS, COX-2, and NF-κB compared to the control group. Furthermore, the total mRNA expressions of JAK1 and SOCS1 in the liver were significantly reduced by all doses of SACI investigated, while the total mRNA levels of liver and testis STAT1 were significantly reduced by 25 and 50 mg/kg of SACI only. In the testis, the mRNA level of SOCS1 was significantly reduced by all doses of SACI compared to MCEL only. Additionally, SACI (at 75 mg/kg) significantly reduced PIAS1 protein expression in the liver, while in the testis, SACI at all investigated doses significantly reduced the expression of PIAS1. In conclusion, SACI demonstrated a hepatic and testicular anti-inflammatory effect by inhibiting the MCEL-induced activation of the NF-κB and JAK-STAT signaling pathways in rats.

2.
Biochem Biophys Rep ; 32: 101360, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36237443

RESUMEN

Methyl cellosolve (MTC) is an established gonadotoxic and hematotoxic compound that is commonly and universally utilized in herbicide, liquid soap, stain, dye, paint, and brake fluid manufacturing industries as a solvent. Due to its wide range usage, this study therefore investigated the effect of syringic acid (SYAC) on hematological indices, sperm characteristics and morphologies, and markers of tissue damage in MTC administered male Wistar rats. Thirty (30) rats divided into six groups were used. Rats in group 1 served as control, those in group 2 were administered MTC for 30 consecutive days, those in groups 3, 4, and 5 were treated with 25, 50, and 75 mg/kg body weight of SYAC respectively also for 30 consecutive days immediately after each day MTC administrations, while rats in group 6 received 75 mg/kg body weight of SYAC only throughout. Compared with control, administrations of MTC resulted in a significant decrease in spermatozoa count, number of normal and live spermatozoa, Hb count, MCH, MCHC, serum TC, and LH, while number of abnormal spermatozoa, RBC and WBC counts, activities of serum AST, ALT, GGT, LDH, and ADH were significantly increased. Treatments with 25 mg/kg of SYAC significantly reduced the RBC and WBC counts, serum activities of AST, ALT, GGT, and increased TC concentration. Treatments with 50 mg/kg SYAC significantly lowered the number of abnormal spermatozoa, RBC count, activities of serum ALT, AST, LDH, ADH, and increased the number of normal spermatozoa, MCV, MCH, and MCHC, while 75 mg/kg of SYAC significantly decreased the serum activities of AST, ALT, GGT, LDH, ADH, and increased serum TC concentration. Findings from this study have revealed the hepatoprotective effect of SYAC at all doses investigated but did not confer spermatoprotection and hematoprotection against MTC-induced toxicities, and looking at the 3 doses investigated, 50 mg/kg of SYAC yielded the best effect.

3.
Biotechnol Rep (Amst) ; 28: e00560, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33299809

RESUMEN

The development of cancer therapies has become difficult due to high metastasis, and lack of tissue selectivity, which in most cases affects normal cells. Demand for anticancer therapy is therefore increasing on daily basis. Gold nanoparticles (AuNPs) have many applications in biomedical field. Biological synthesis of AuNPs using aqueous extract of Crassocephalum rubens (AECR) was designed to investigate the in vitro anticancer potential. The synthesized AuNPs were characterized by UV-vis spectroscopy, high-resolution transmission electron microscopy, and Fourier transform infrared spectroscopy. The characterization results showed the formation of green AuNPs of wavelength 538 nm, and mostly spherical AuNPs with 20 ±â€¯5 nm size. Significant anticancer activity of the AECR-AuNPs on MCF-7 and Caco-2 cells was noted at higher concentrations (125 and 250 µg/mL) during 24 and at all concentrations tested during 48 h. It can therefore be concluded that AECR leaves can mediate stable AuNPs with anticancer properties.

4.
Heliyon ; 6(11): e05501, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33251363

RESUMEN

The use of plant and plant products in the synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) is made possible because of the natural inherent phytochemicals responsible for the reduction of respective metallic salts to nanoparticle forms, and ensuring therapeutic applicability. In this study, synthesis of AgNPs and AuNPs was performed using two different aqueous extraction methods for Crassocephalum rubens: maceration using laboratory method of extraction (cold aqueous extract of Crassocephalum rubens (AECR)), and decoction using traditional healer's method of extraction (hot aqueous crude extract of Crassocephalum rubens (CECR)). The synthesized nanoparticles were characterized using various methods, and in vitro antioxidant potential were thereafter investigated. The characterization results indicated the formation of mostly spherical-shaped AgNPs and AuNPs with surface plasmon resonance (SPR) band of 470 nm and 540 nm, respectively. The nanoparticles possess high antioxidant potentials but AECR synthesized AuNPs exhibited the least phytochemical contents and antioxidant potential when compared to other nanoparticles. It can therefore be concluded that extraction method and nanoparticle type are important factors that could influence the antioxidant properties of the nanoparticles. Further studies using these nanoparticles as anticancer or anti-inflammatory agent in both in vitro and in vivo are underway.

5.
J Int Med Res ; 48(6): 300060520922649, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32602393

RESUMEN

OBJECTIVE: This study was designed to evaluate the protective effect of aqueous extract of Solanum macrocarpon Linn leaf in the brain of an alloxan-induced rat model of diabetes. METHODS: The experimental model of diabetes was induced by a single intraperitoneal injection of freshly prepared alloxan. Rats were then divided into six groups: normal control, diabetes control, diabetes group treated with metformin, and three diabetes groups treated with different concentrations of S. macrocarpon. Rats were sacrificed on day 14 of the experiment and different brain biochemical parameters were assessed and compared between groups. RESULTS: Administration of different doses of S. macrocarpon leaf aqueous extract was associated with significantly reduced levels of fasting blood glucose, lipid peroxidation, neurotransmitters, cholinesterases, cyclooxygenase-2 and nitric oxide compared with diabetes control rats. In addition, antioxidant enzyme activities were significantly increased in diabetes rats administered 12.45, 24.9 and 49.8 mg/kg body weight of S. macrocarpon versus diabetes control rats. CONCLUSION: Aqueous extract of S. macrocarpon Linn leaf may be useful in the management of diabetic neuropathy.


Asunto(s)
Diabetes Mellitus Experimental , Solanum , Aloxano , Animales , Glucemia , Encéfalo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes , Extractos Vegetales/farmacología , Hojas de la Planta , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA